tensorflow 神经网络模型 更多内容
  • ModelArts最佳实践案例列表

    Qwen-VL基于DevServer适配Pytorch NPU的推理指导 Qwen-VL模型训练推理 介绍Qwen-VL模型基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,应用于大模型对话场景。 LLaVA模型基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包括向量内积外积、矩阵乘法、神经网络等。利用核函数建模特征交互,实现了参数共享,减小了模型复杂度。PIN算法请参见核函数特征交互神经网络。 config 否

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    objects 引擎运行环境。 表5 EngineAndRuntimesResponse 参数 参数类型 描述 ai_engine String AI引擎类型,目前共有以下几种类型: TensorFlow PyTorch MindSpore XGBoost Scikit_Learn Spark_MLlib

    来自:帮助中心

    查看更多 →

  • 功能介绍

    高了抗噪性能,使识别准确率显著提升。 识别速度快 把语言模型、词典和声学模型统一集成为一个大的神经网络,同时在工程上进行了大量的优化,大幅提升解码速度,使识别速度在业内处于领先地位。 多种识别模式 支持多种 实时语音识别 模式,如流式识别、连续识别和实时识别模式,灵活适应不同应用场景。

    来自:帮助中心

    查看更多 →

  • 模型配置文件编写说明

    模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 模型训练

    任务运行环境 AI引擎 AI引擎AI引擎的Python版本。 创建tensorboard任务 创建Tensorboard,详情请参见创建Tensorboard。 自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格 模型训练服务提供的计算节点资源,包括CPU和GPU。

    来自:帮助中心

    查看更多 →

  • 如何在训练中加载部分训练好的参数?

    如何在训练中加载部分训练好的参数? 在训练作业时,需要从预训练的模型中加载部分参数,初始化当前模型。请您通过如下方式加载: 通过如下代码,您可以查看所有的参数。 from moxing.tensorflow.utils.hyper_param_flags import mox_flags

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 导入模型

    导入模型 导入模型功能包括: 初始化已存在的模型,根据模型ID生成模型对象。 创建模型模型对象的属性,请参见查询模型详情。 示例模型文件 以PyTorch为例,编写模型文件。PyTorch模型包结构可参考模型包规范介绍。 OBS桶/目录名 ├── resnet │ ├── model

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    转换逻辑模型为物理模型 功能介绍 转换逻辑模型为物理模型,转换成功则显示转换后的目标模型信息。 异常:目标模型信息的“id”等属性为null时,则需要调用《获取操作结果》接口查看具体报错信息:GET https://{endpoint}/v1/{project_id}/design/operation-results

    来自:帮助中心

    查看更多 →

  • 模型测试

    单击界面左下角的“异常检测模型测试”,弹出“异常检测模型测试”代码框,如图3所示。 “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 发布模型

    发布模型 逻辑实体创建完成后,必须创建对应的物理实体,才可以发布逻辑模型。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据建模”。 在左侧导航中,单击展开分层,选择一个分层。 在需要发布的逻辑实体对应的“操作”列下,单击>。 在“提示”对话框中单击“确认”。 在“确认”对话框中单击“确定”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型包 编辑模型包 上架模型包至AI市场 发布推理服务 模型包完整性校验 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 归档模型

    是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab特征工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了