经销商伙伴计划

具有华为云的售前咨询、销售、服务能力,将华为云销售给最终用户的合作伙伴

 

 

 

    bp神经网络模型预测模型 更多内容
  • 深度学习模型预测

    model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    练好的模型,对图片进行分类,模型名称Inception-v3。Inception-v3是在2012年ImageNet视觉识别挑战赛上训练出的模型,它将一个非常大的图片集进行了1000个种类的图片分类。Github有使用Inception-v3进行图片分类的代码。 训练模型的代码,

    来自:帮助中心

    查看更多 →

  • 评估模型

    工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 “整体评估”左侧显示当前模型的标签名称和评估参数值,包括“精准率”、“召回率”、“F1值”。 “整体评估”右侧显示当前模型和其他版本模型的评估参数值柱状图,包括

    来自:帮助中心

    查看更多 →

  • 发起联邦预测

    至此,企业A完成了整个 TICS 联邦建模的流程,并将模型应用到了营销业务当中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 查看评估任务详情

    查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情

    来自:帮助中心

    查看更多 →

  • GS_ABO_MODEL_STATISTIC

    integer 模型训练数据量。 status integer 模型状态。0表示模型无效,1表示模型有效,2表示模型待更新,3表示模型处于黑名单中。 train_count integer 模型总训练次数。 train_failure_count integer 模型训练失败次数。

    来自:帮助中心

    查看更多 →

  • 使用模型

    使用模型 用训练好的模型预测测试集中的某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试的图片 查看预测结果,命令如下。 1

    来自:帮助中心

    查看更多 →

  • 排序策略

    初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式

    来自:帮助中心

    查看更多 →

  • 预审核模型文件

    预审核模型文件 预审核模型完成对已标数据的审核,并将审核结果和审核所用的审核规则按照规定格式放在指定路径中。 模型文件基本要求 自定义模型包通过环境变量获取数据集路径和推理结果存放路径,将每帧数据的审核结果按照规定格式存入规定路径的json文件中。 自定义模型包中必须包含启动文件

    来自:帮助中心

    查看更多 →

  • 部署应用/BO

    部署应用/BO 本节介绍如何安装部署智能排班模型BO和智能排班基线应用。 背景信息 定制开发时,可以基于智能排班模型BO,也可以基于智能排班基线应用。 智能排班模型BO:ISDP__IntelligentSchedulingModel_b-XX.XX.XX.zip、ISDP__I

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    指使用模型对未来的数据进行推测。 DLI 服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive Integrated Moving Average)是时间序列预测中的经典模型,和AR/MA/ARMA模型之间联系紧密。

    来自:帮助中心

    查看更多 →

  • 查看训练任务详情与训练指标

    数据质量来解决。 图6 异常的Loss曲线:异常抖动 模型准确率指标介绍 模型准确率:正确预测(标注与预测完全匹配)的样本数与总样本数的比例。模型准确率越高,表明模型性能越好。 指标看板介绍 指标看板使用BLEU指标评价模型,其核心思想是计算准确率。例如,给定一个标准译文(ref

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 评估模型

    已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 图1 模型评估 “模型评估”显示当前模型的“版本”、“标签数量”、“验证集数量”。 “评估参数对比”显示当前模型和其他版本模型的评估参数值柱状图,包括“交并

    来自:帮助中心

    查看更多 →

  • BP账户能使用消息&短信服务吗?

    BP账户能使用消息&短信服务吗? 不能。BP账户及其子账户都不能开通和使用华为 云消息 &短信服务。 父主题: 认证相关

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在 自然语言处理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了