tensorflow 均匀分布 更多内容
  • 导入(转换)模型

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

  • 选择分布列

    选择分布列 Hash分布表的分布列选取至关重要,需要满足以下原则: 列值应比较离散,以便数据能够均匀分布到各个DN。例如,考虑选择表的主键为分布列,如在人员信息表中选择身份证号码为分布列。 在满足第一条原则的情况下尽量不要选取存在常量filter的列。例如,表dwcjk相关的部分

    来自:帮助中心

    查看更多 →

  • 算法类问题

    技能SDK或者License如何使用和烧录? 华为HiLens技能是否支持Android 平台或ARM平台上运行? 华为HiLens上可以运行哪些TensorFlowCaffe的模型? 华为HiLens支持自行开发算子吗? 华为HiLens提供的开发环境是什么语言? HiLens Kit是否有图片灰度化接口?

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • JupyterLab常用功能介绍

    进入JupyterLab主页后,可在“Notebook”区域下,选择适用的AI引擎,单击后将新建一个对应框架的ipynb文件。 由于每个Notebook实例选择的工作环境不同,其支持的AI框架也不同,下图仅为示例,请根据实际显示界面选择AI框架。 图4 选择AI引擎并新建一个ipynb文件 新建的ipynb文件将呈现在左侧菜单栏中。

    来自:帮助中心

    查看更多 →

  • 硬盘限制故障

    硬盘限制故障 下载或读取文件报错,提示超时、无剩余空间 复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device”

    来自:帮助中心

    查看更多 →

  • 选择分布列

    选择分布列 Hash分布表的分布列选取至关重要,需要满足以下原则: 列值应比较离散,以便数据能够均匀分布到各个DN。例如,考虑选择表的主键为分布列,如在人员信息表中选择身份证号码为分布列。 在满足上述条件的情况下,考虑选择查询中的连接条件为分布列,以便Join任务能够下推到DN中执行,且减少DN之间的通信数据量。

    来自:帮助中心

    查看更多 →

  • 选择分布列

    选择分布列 Hash分布表的分布列选取至关重要,需要满足以下原则: 列值应比较离散,以便数据能够均匀分布到各个DN。例如,考虑选择表的主键为分布列,如在人员信息表中选择身份证号码为分布列。 在满足上述条件的情况下,考虑选择查询中的连接条件为分布列,以便Join任务能够下推到DN中执行,且减少DN之间的通信数据量。

    来自:帮助中心

    查看更多 →

  • 哈希分区

    GaussDB 内置哈希算法,在分区键取值范围不倾斜(no data skew)的场景下,哈希算法在分区之间均匀分布行,使分区大小大致相同。因此哈希分区是实现分区间均匀分布数据的理想方法。哈希分区也是范围分区的一种易于使用的替代方法,尤其是当要分区的数据不是历史数据或没有明显的分区键时,示例如下:

    来自:帮助中心

    查看更多 →

  • 哈希分区

    DB Kernel内置哈希算法,在分区键取值范围不倾斜(no data skew)场景下,哈希算法在分区之间均匀分布行,使分区大小大致相同。因此哈希分区是实现分区间均匀分布数据的理想方法。哈希分区也是范围分区的一种易于使用的替代方法,尤其是当要分区的数据不是历史数据或没有明显的分区键时,示例如下:

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    已有镜像迁移至ModelArts用于训练模型 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 调度策略

    调度策略 如何让多个Pod均匀部署到各个节点上? 如何避免节点上的某个容器被驱逐? 为什么Pod在节点不是均匀分布? 如何驱逐节点上的所有Pod? 如何查看Pod是否使用CPU绑核? 节点关机后Pod不重新调度 如何避免非GPU/NPU负载调度到GPU/NPU节点? 为什么Pod调度不到某个节点上?

    来自:帮助中心

    查看更多 →

  • 功能咨询

    本地导入的算法有哪些格式要求? 欠拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical features)吗 模型可视化作业中各参数的意义?

    来自:帮助中心

    查看更多 →

  • 如何上传模型至华为HiLens?

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    r/work/Dockerfile", image_url="custom_test/tensorflow2.1:1.0.0",#custom_test是组织名,tensorflow2.1是镜像名称,1.0.0是tag context="/home/ma-user/work")

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    GaussDB(DWS)表设计规则 GaussDB(DWS)是分布式架构。数据分布在各个DN上。总体上讲,良好的表设计需要遵循以下原则: 【关注】将表数据均匀分布在各个DN上。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。 【关注

    来自:帮助中心

    查看更多 →

  • Cluster集群实例容量和性能未达到瓶颈,但某个分片容量或性能已过载是什么原因?

    得到对应的槽位(Slot)值。 根据S槽位(Slot)和分片的映射关系,找到Key具体应该属于的分片,并且进行存取。 所以,Key并没有均匀分布在实例的各个分片上,是根据计算结果进行存取的。在大Key和热Key存在时,就会出现某个分片容量或性能已过载,但其他分片内存负载还是很低,并没有达到容量和性能的瓶颈。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为 均值为0,方差为 Var(wi)=1/nin 的均匀分布(高斯或者随机分布)。其中 nin

    来自:帮助中心

    查看更多 →

  • 查询TFJob

    "template": { "spec": { "containers": [ {

    来自:帮助中心

    查看更多 →

  • 创建自动模型优化的训练作业

    创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了