tensorflow relu name 更多内容
  • 配置pip源后安装组件失败

    install tensorflow”为例,tensorflow的simple页面为https://mirrors.huaweicloud.com/repository/pypi/simple/tensorflow/。 在页面中可以查看到组件“tensorflow-2.0.0rc

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow的框架,TensorFlow2.0的基础与高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2

    来自:帮助中心

    查看更多 →

  • 插件安装失败,提示The release name is already exist如何解决?

    插件安装失败,提示The release name is already exist如何解决? 问题现象 当安装插件失败,返回 The release name is already exist 错误。 问题原因 当安装插件返回The release name is already exis

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 如何在CodeLab上安装依赖?

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 在代码输入栏输入以下命令安装Shapely。 pip install Shapely

    来自:帮助中心

    查看更多 →

  • 通过API接口查询模型详情,model_name返回值出现乱码

    通过API接口查询模型详情,model_name返回值出现乱码 问题现象 通过API接口查询模型详情,model_name返回值出现乱码。例如model_name为query_vec_recall_model,但是api接口返回结果是query_vec_recall_model_b。

    来自:帮助中心

    查看更多 →

  • 使用自定义镜像增强作业运行环境

    com/dli-public/spark_general-x86_64:3.3.1-2.3.7.1720240419835647952528832.202404250955 创建 自定义镜像 tensorflow为例,说明如何将tensorflow打包进镜像,生成安装了tensorflow的自定义镜像,在 DLI 作业中使用该镜像运行作业。

    来自:帮助中心

    查看更多 →

  • MoXing

    MoXing 使用MoXing复制数据报错 如何关闭Mox的warmup Pytorch Mox日志反复输出 moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 训练作业使用MoXing复制数据较慢,重复打印日志

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    的训练作业,勾选“动态加载”。AI引擎的值是系统自动写入的,无需设置。 图5 设置元模型来源 在AI应用列表页面,当AI应用状态变为“正常”时,表示AI应用创建成功。单击AI应用操作列的“部署”,弹出“版本列表”,单击操作列“部署>在线服务”,将AI应用部署为在线服务。 图6 部署在线服务

    来自:帮助中心

    查看更多 →

  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 业务代码问题

    object has no attribute 'dtype'” 日志提示“No module name 'unidecode'” 分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败

    来自:帮助中心

    查看更多 →

  • 云解析服务(Domain Name Service)_DNS_企业应用-华为云

    成长地图 | 华为云 云解析服务 云解析服务(Domain Name Service)提供高可用,高扩展的权威DNS服务和DNS管理服务,帮助您将 域名 或应用资源转换成用于计算机连接的IP地址,从而将最终用户路由到相应的应用资源上。 产品介绍 图说DNS 立即使用 成长地图 由浅入深,带您玩转DNS

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网络模型,可以借此导入Theano、TensorflowCaffe、CNTK等主流学习框架的模型。 语法格式 1 2 3 4 5

    来自:帮助中心

    查看更多 →

  • 查询AI应用列表

    不能同时存在。可选值为TensorFlowPyTorch、MindSpore、Image、Custom、Template。 not_model_type 否 String 模型类型,查询不属于该类型的模型列表。可选值为TensorFlowPyTorch、MindSpore、I

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网络模型,可以借此导入Theano、TensorflowCaffe、CNTK等主流学习框架的模型。 语法格式 1 2 3 4 5

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    seService): def __init__(self, model_name, model_path): self.model_name = model_name self.model_path = model_path

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了