数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

 
进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           

    spark机器学习python 更多内容
  • DLI作业开发流程

    使用CES监控 DLI 服务 您可以通过云监控服务提供的管理控制台或API接口来检索 数据湖探索 服务产生的监控指标和告警信息。 例如监控DLI队列资源使用量和作业的运行情况。了解更多DLI支持的监控指标请参考使用CES监控DLI服务。 使用 CTS 审计DLI服务 通过 云审计 服务,您可以记录与D

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    ore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0.9.0-mindspore2.0.0-cuda11

    来自:帮助中心

    查看更多 →

  • 配置Spark Python3样例工程

    客户端机器必须安装有setuptools,版本为47.3.1。 具体软件,请到对应的官方网站获取。 https://pypi.org/project/setuptools/#files 将下载的setuptools压缩文件复制到客户端机器上,解压后进入解压目录,在客户端机器的命令行终端执行python3

    来自:帮助中心

    查看更多 →

  • 配置Spark Python3样例工程

    客户端机器必须安装有setuptools,版本为47.3.1。 具体软件,请到对应的官方网站获取。 https://pypi.org/project/setuptools/#files 将下载的setuptools压缩文件复制到客户端机器上,解压后进入解压目录,在客户端机器的命令行终端执行python3

    来自:帮助中心

    查看更多 →

  • 使用Jupyter Notebook对接MRS Spark

    6”目录(机器不同,目录也有所不同,可以通过which命令来查找当前运行python是使用的那个目录的),然后编辑lzma.py文件。 将: from _lzma import * from _lzma import _encode_filter_properties, _decode_filter_properties

    来自:帮助中心

    查看更多 →

  • 开发一个MRS Spark Python作业

    ngji/python/ 创建一个数据开发模块空作业,作业名称为“job_ MRS _Spark_Python”。 图2 新建作业 进入到作业开发页面,拖动“MRS Spark Python”节点到画布中并单击,配置节点的属性。 图3 配置MRS Spark Python节点属性 参数设置说明:

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有CTS追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • Python

    下载SDK的最新版本。 获取并安装Python安装包(可使用2.7或3.X),如果未安装,请至Python官方下载页面下载。 获取并安装IntelliJ IDEA,如果未安装,请至IntelliJ IDEA官方网站下载。 已在IntelliJ IDEA中安装Python插件,如果未安装,请按照图1所示安装。

    来自:帮助中心

    查看更多 →

  • Python

    Python 本文档所述Demo在提供服务的过程中,可能会涉及个人数据的使用,建议您遵从国家的相关法律采取足够的措施,以确保用户的个人数据受到充分的保护。 本文档所述Demo仅用于功能演示,不允许客户直接进行商业使用。 本文档信息仅供参考,不构成任何要约或承诺。 发送短信 # -*-

    来自:帮助中心

    查看更多 →

  • Python

    Secret等信息,具体参见认证前准备。 获取并安装Python安装包(可使用2.7.9+或3.X),如果未安装,请至Python官方下载页面下载。 Python安装完成后,在命令行中使用pip安装“requests”库。 pip install requests 如果pip安装

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 语音回呼场景API、获取录音文件下载地址API、呼叫状态通知API、话单通知API 环境要求 Python 3.0及以上版本。 引用库 requests 2.18.1 请自行下载安装Python 3.x,并完成环境配置。 打开命令行窗口,执行pip install

    来自:帮助中心

    查看更多 →

  • Python

    X版本,如果未安装,请至Python官方下载页面下载。 Python安装完成后,在cmd/shell窗口中使用pip安装“requests”库。 pip install requests 如果pip安装requests遇到证书错误,请下载并使用Python执行此文件,升级pip,然后再执行以上命令安装。

    来自:帮助中心

    查看更多 →

  • Python

    。 已安装Python安装包2.7.9或3.X版本,如果未安装,请至Python官方下载页面下载。 已安装IntelliJ IDEA 2018.3.5或以上版本,如果未安装,请至IntelliJ IDEA官方网站下载。 已在IntelliJ IDEA中安装Python插件,如果未安装,请按照图1所示安装。

    来自:帮助中心

    查看更多 →

  • Python

    Python 开发事件函数 python模板 制作依赖包

    来自:帮助中心

    查看更多 →

  • Python

    Python 分段上传Python语言的示例代码,如下所示: import base64 import hashlib import os import re import xml.etree.ElementTree as ET import requests from huaweicloudsdkcore

    来自:帮助中心

    查看更多 →

  • SparkStreaming批量写入HBase表

    中调测Spark应用。 将打包生成的jar包上传到Spark客户端所在 服务器 的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn

    来自:帮助中心

    查看更多 →

  • Spark Structured Streaming样例程序(Python)

    aming接收器的数据。 #!/usr/bin/python # -*- coding: utf-8 -*- import sys from pyspark.sql import SparkSession from pyspark.sql.functions import explode

    来自:帮助中心

    查看更多 →

  • 使用Spark执行Hudi样例程序(Python)

    convertToStringList(dataGen.generateInserts(10)) df = spark.read.json(spark.sparkContext.parallelize(inserts, 2)) hudi_options = { 'hoodie.table.name':

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了