数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

 
进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           

    spark 机器学习库 更多内容
  • 如何在DLI中运行复杂PySpark程序?

    thon程序也有依赖一些第三方,尤其是基于PySpark的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python安装到执行机器上,对于 DLI 这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DL

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    发的基础。在执行作业前您需要根据业务场景定义数据和表。 Flink支持动态数据类型,可以在运行时定义数据结构,不需要事先定义元数据。 定义您的数据结构,包括数据目录、数据、表。请参考创建数据和表。 创建必要的存储桶来存储作业运行过程中产生的临时数据:作业日志、作业结果等。请参考配置DLI作业桶。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • Spark应用开发简介

    并支持多种外部输入。 Apache Spark部件架构如图1所示。本文档重点介绍SparkSpark SQL和Spark Streaming应用开发指导。MLlib和GraghX的详细指导请参见Spark官方网站:http://spark.apache.org/docs/2.2

    来自:帮助中心

    查看更多 →

  • 新购买的机器人是否可以与旧机器人共享语料库

    新购买的机器人是否可以与旧机器人共享语料 如果新购买的机器人与旧机器人均为“专业版”。可以使用“知识共享”功能,实现语料共享。 将旧机器人的语料共享给新的机器人,操作如下。 登录CBS控制台,选择旧机器人,进入问答机器人管理页面。 选择“高级设置 > 知识共享”,并单击“添加机器人ID”,设置共享的内容。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 如何删除机器人

    如何删除机器人 试用版本机器人 对于试用版本的智能问答机器人,可以通过“删除”操作将机器人删除,删除后不支持恢复。 图1 删除试用机器人 包周期版本机器人 对于包周期计费的智能问答机器人,可执行“退订”操作。 登录对话机器人服务管理控制台。 在控制台中选择“费用与成本”。 进入费

    来自:帮助中心

    查看更多 →

  • 测试机器人

    测试机器人 操作步骤 选择“配置中心>机器人管理>流程配置”,进入流程配置界面。 选择“智能机器人”。在需要测试的接入码最后一列单击“呼叫测试”。 在弹出的测试对话窗口中单击“开始呼叫”,开始测试机器人。 图1 测试机器人 父主题: 配置一个预约挂号机器人(任务型对话机器人)

    来自:帮助中心

    查看更多 →

  • 配置机器人跟踪

    配置机器人跟踪 前提条件 存在已发布的IVR流程且配有转移图元。 操作步骤 以租户管理员角色登录AICC,选择“配置中心 > 机器人管理>流程配置 ”,进入管理界面。 选择“系统管理>系统设置”界面,选择跟踪设置页签。 机器人跟踪单击“”,进入机器人跟踪配置页面。 选择机器人接入码,单击“确定”,接入码配置完成。

    来自:帮助中心

    查看更多 →

  • 使用Jupyter Notebook对接MRS Spark

    创建代码。 创建一个新的python3任务,使用Spark读取文件。 图4 创建Python任务 登录到集群Manager界面,在Yarn的WebUI页面上查看提交的pyspark应用。 图5 查看任务运行情况 验证pandas调用。 图6 验证pandas 对接Jupyter常见问题

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 成长地图

    式。数据无需复杂的抽取、转换、加载,使用SQL或程序就可以对云上CloudTable、RDS、DWS、 CSS 、OBS、E CS 自建数据以及线下数据的异构数据进行探索。 产品介绍 图说DLI 立即使用 成长地图 由浅入深,带您玩转DLI 01 了解 初步认识华为云 数据湖探索 ,了解

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器人服务 对话机器人服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识的智能问答机器人系统。 对话机器人服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • 功能总览

    DLI元数据是SQL作业、Spark作业场景开发的基础。在执行作业前您需要根据业务场景定义数据和表。 · 数据目录:数据目录(Catalog)是元数据管理对象,它可以包含多个数据。您可以在DLI中创建并管理多个Catalog,用于不同的元数据隔离。 · 数据:数据是按照数据结构来组

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了