AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型多特征回归 更多内容
  • 特征选择

    列筛选方式 特征列的筛选方式,有如下两种: 列选择 正则匹配 列名 列筛选方式为“列选择”时展示,如果有特征数据需要删除,可单击“”同时选中特征名称。 正则表达式 列筛选方式为“正则匹配”时展示,请根据实际情况输入正则表达式,系统自动筛选符合正则筛选规则的所有特征列。 当前操作流

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 功能介绍

    可定制化 针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 筛选特征

    特征;过低的iv值没有区分性会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区分度,可以不选用;而f0、f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业

    来自:帮助中心

    查看更多 →

  • 模型训练

    参数设置,重新选择使用的模型,或关闭特征搜索。 其中“排行榜”展示所有训练出的模型列表,支持对模型进行如下操作: 单击模型所在行对应“操作”列的“详情”,查看模型超参取值和模型评分结果。 单击模型所在行对应“操作”列的“预测”,在新增的“AutoML模型预测”内容中,选择测试数据

    来自:帮助中心

    查看更多 →

  • 特征操作

    两个特征列ID1(2,7,1)和特征列ID2(3,2,7),求和后构造出的特征列为ID_SUM(5,9,8)。 选择的特征必须是数值型,并且没有异常值。 新增特征操作步骤如下。 单击表头,依次选中多个特征列。 单击“特征操作”,从下拉框中选择“新增特征”。 弹出“新增特征”对话框。参数设置如下所示:

    来自:帮助中心

    查看更多 →

  • 特征画像

    特征画像 特征画像的作用,就是对数据进行分析,把其中一些基本特征提取出来,如:周期性、离散度、时序规律、最值、采样频率等,计算KPI曲线特点(包括周期性、趋势性、噪声、离散性、随机性等)。根据计算的曲线特点,判断KPI的大类别(毛刺型、阶梯型、周期型、离散型、稀疏型、模态型等)

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 功能介绍

    丰富的CPU、GPU和华为自研Ascend芯片资源,进行模型训练。 模型管理 模型训练服务统一的模型管理菜单。集成在线VSCode开发环境,支持对模型进行编辑修改后,生成新模型包。同时支持模型组合编排生成新模型。支持将模型下载至本地、生成SHA256校验码、上架至NAIE服务官

    来自:帮助中心

    查看更多 →

  • 数据转换

    参数说明 列筛选方式 特征列的筛选方式,有如下两种: 列选择 正则匹配 列名 列筛选方式为“列选择”时展示,如果特征数据均需要归一化到同一数据区间,可单击“”同时选中特征名称。 新列名 默认为空,则直接在原特征列上面做归一化处理。如果设置“新列名”,则原特征列不变,新增经过归一化处理后的一列。

    来自:帮助中心

    查看更多 →

  • 策略参数说明

    是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0,1],默认值为0。 L2正则项系数(lambda2) 是 Double 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。取值范围[0,1],默认值为0。 学习率(learning_rate)

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 产品优势

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 概述

    特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 时序预测

    、稀疏型、模态型等)。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“特征画像”左侧的图标,运行代码。 运行完成后,5个KPI指标以页签方式,展示各自的原始数据及其密度分布图。运行结果右侧的参数说明,如表1所示。 表1 特征画像参数说明

    来自:帮助中心

    查看更多 →

  • 数据探索

    列名 预测变量,单击“”选择列名,支持列选择。 特征列变换初始化方法 ACE分析时,特征列的初始化方式,支持如下特征列变换初始化方法: zeros 表示0作为初始值。 zero-mean 表示将特征值减去均值后的值作为初始值。 std 表示将特征值减去均值再除以方差后的值作为初始值。

    来自:帮助中心

    查看更多 →

  • 应用场景

    审核结果屏蔽或删除该视频。 场景优势: 全方位检测:提供模态综合审核方案,对视频内容中的画面、声音、文字进行全方位解析。 准确率高:全面场景覆盖,避免误杀漏杀,实时防御风险。 视频网站 将视频流送入模型进行实时审核,模型将分析视频内容并判断是否存在违规内容。 场景优势: 审核效

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    der等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1, 0, 0]表示,1用向量[0,1,0]表示,2用向量[0

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了AR和MA两个模型的优势,在ARMA模型中,自回归过程负责量化当前数据与前期数据之间的关系,移动平均过程负责解决随机变动项的求解问题,因此,该模型比AR/MA更为有效和常用。 ARIMA适用于非平稳序列

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了