AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习场景语义分割识别 更多内容
  • 语义分割2D

    语义分割2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054

    来自:帮助中心

    查看更多 →

  • 语义分割3D

    语义分割3D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.pcd | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054

    来自:帮助中心

    查看更多 →

  • 语义分割点云标注任务

    语义分割点云标注任务 语义分割任务是指根据标注规范将待标注点云图像中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割点云标注任务 绘制对象 单击大规模3D语义分割任务,单击任意一帧,进入人工标注。 单击左侧标注工具栏,选择对应的标注工具。 选择对应的标注类别。 绘制标注物。

    来自:帮助中心

    查看更多 →

  • 语义分割图片标注任务

    语义分割图片标注任务 语义分割任务是指根据标注规范将待标注图片中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割图片标注任务 绘制对象 绘制多边形。 选择左侧工具栏多边形按钮,(快捷键4,非小键盘)绘制多边形。 图2 绘制多边形 选择标注。 标注列表页选择符合的标注。 图3

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 语义识别图元

    nomatch1 未识别1次 在如下两种场景下,触发nomatch1: 当语义识别图元未找到匹配结果(即语义识别图元返回未知意图命令字)。 当第三方系统(例如IVR)返回input的值为nomatch的消息时。 该场景通常为ASR系统识别失败返回给IVR。 nomatch2 未识别2次 在同

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 场景识别

    场景识别 单帧识别 多帧识别 父主题: 智驾模型服务

    来自:帮助中心

    查看更多 →

  • 语义识别业务请求接口

    语义识别业务请求接口 场景描述 获取意图模板的匹配情况。 接口方法 设置成“POST”。 URL https://IP:PORT/oifde/rest/api/speechrecognition 请求说明 表1 请求体参数 参数名称 数据类型 参数位置 必选/可选 描述 userId

    来自:帮助中心

    查看更多 →

  • 功能介绍

    面向个人/组织的云端多人协同样本标注与管理,支持基于多光谱、SAR、高光谱、无人机等航天航空影像及时空地理矢量数据进行标注,覆盖目标识别语义分割、变化检测三种场景,实现从样本标注、质检、审核、样本集制作、入库管理全流程。 图5 多人协同的样本标注1 图6 多人协同的样本标注2 支持上传

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述 测试步骤

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检测,准确识别图像中包含的影视明星、网红人物等。

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的语音识别模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功应用于各类场景,基于企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    将视频图片输入至算法模型中,将视频图像分割为面部、手部和身体三个区域。 使用深度学习算法,识别面部区域转化为面部表情,识别手部区域转化为手部骨骼驱动数据,识别身体转化为人体骨骼驱动数据。 对算法输出系数进行平滑处理及异常数据过滤,返回结果。 算法应用场景 数字人视觉驱动算法可用于影视制

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 修改语义识别后返回给调用方的应答模板

    修改语义识别后返回给调用方的应答模板 信息匹配流程中第二个应答图元的应答模板PromptText,json格式是固定的,但是要注意引用的参数名称与该流程中定义的流程变量名称一致。 选择“流程管理 > 流程编排”,单击信息匹配流程后的,进入流程编辑页面。 单击下方的“应答”图元,查看其“应答模板”名称。

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 内容审核-图像 内容审核 -图像有以下应用场景: 视频直播 在互动直播场景中,成千上万个房间并发直播,人工审核直播内容几乎不可能。基于 图像审核 能力,可对所有房间内容实时监控,识别可疑房间并进行预警。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了