AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习场景语义分割识别 更多内容
  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别 机器翻译 编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 多语义化

    语义化 参数多语言支持对variable的参数名字、描述和类型进行词条翻译,当前支持zh_cn、en_us两种语义 i18n中示例如下: "i18n": { "zh_cn": [ { "variable_name":

    来自:帮助中心

    查看更多 →

  • 修改语义识别后返回给调用方的应答模板

    修改语义识别后返回给调用方的应答模板 信息匹配流程中第二个应答图元的应答模板PromptText,json格式是固定的,但是要注意引用的参数名称与该流程中定义的流程变量名称一致。 应答模板可以客户自行配置,也可以由业务人员根据客户要求事先配置,配置完该模板后,后台会自动读取其中参数信息。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线为样式型组件,用于分割字段,起装饰作用。 在左侧组件区域,选择“分割线”组件,并拖拽至设计区域,如图1所示。 图1 拖拽分割线组件到设计区并设置属性 基础配置 文本:设置分割线上显示的文字。输入内容不得超过32个字符。 分割线样式:选择分割线的样式,如虚线、点线、双线或实线。

    来自:帮助中心

    查看更多 →

  • 2D预标注

    超过10,000,000像素。 语义分割(混合) 图3 文件上传 预标注功能:此处选择“语义分割(混合)”。 添加文件:上传本地图片。只能选择JPG/JPEG/PNG文件,图片大小不能超过7MB,且不能超过10,000,000像素。 单击“开始识别”,生成相关返回值。2D预标注支持的标注类别详见2D预标注类别列表。

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线是装饰组件的一种,用于分割组件,起装饰作用,包括分割线和竖分割线。 以分割线16-1为例,在大屏设计页面,从“全部组件 > 装饰”中,拖拽“分割线16-1”组件至画布空白区域,如图1。 图1 分割线16-1 页面背景色设置为白色时,分割线组件很难显示出来。使用该组件时,请避免使用白色背景。

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线为样式型组件,用于分割字段,起装饰作用。 在表单设计页面,从“样式布局”中,拖拽“分割线”组件至表单设计区域,如图1所示。 图1 拖拽分割线组件到设计区并设置属性 状态:设置分割线的状态,如普通、隐藏。 普通:设置为普通后,页面上可正常显示分割线。 隐藏:设置为隐藏后,页面上的分割线将不再显示。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 推荐系统支持深度智能挖掘用户和物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标和用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、

    来自:帮助中心

    查看更多 →

  • 智能文档解析

    智能文档解析 功能介绍 智能文档解析基于领先的深度学习技术,对含有结构化信息的文档图像进行键值对提取、表格识别与版面分析并返回相关信息。不限制版式情况,可支持多种证件、票据和规范行业文档,适用于各类行业场景。 应用场景 金融:银行回单、转账存单、理财信息截图等。 政务:身份证、结婚证、居住证、各类企业资质证照。

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    基于领先的语音识别引擎、智能文本检测模型,精准识别出语音中涉黄、涉恐、辱骂等违规场景,极大提升产品用户体验。 内容审核-视频 基于先进的人工智能技术综合检测视频画面、声音、字幕等,精准高效识别各类涉黄、涉暴、广告等违规内容,提高平台内容治理质量和效率。 内容审核 -音频流 精准识别多场景下

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案的应用场景、方案架构、方案优势及其约束与限制。 虚拟数字人是基于近年来深度学习开发出的前沿技术而成形的一种“虚拟人”,它能够根据不同的应用场景,通过模拟人类行为并采用深度学习技术来实现自动化处理,使得被认知的过程更加准确、高效。本文将对此进行深入的分析,包括应用场景、方案架构

    来自:帮助中心

    查看更多 →

  • 功能介绍

    生成、文献摘要生成、搜索结果片段生成、商品评论摘要等场景中。 语言理解 (Language Understanding,简称LU),为用户提供包括文本分类、情感分析等语言理解相关的API,可用于情感分析、内容检测、广告识别场景中。 机器翻译(Machine Translation

    来自:帮助中心

    查看更多 →

  • 什么是商标分割?

    什么是商标分割? 商标分割指商标局对您递交的商标注册申请进行了部分驳回并核发《商标部分驳回通知书》,如您未对部分驳回项发起商标驳回复审申请,30天左右后,商标局会自动将您的商标注册申请进行分割,部分情况下可能会延迟,具体以商标局实际进行分割的时间为准。审查通过部分将进行商标初步审查公告,审查不通过部分将进行驳回。

    来自:帮助中心

    查看更多 →

  • 数据标注场景介绍

    持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。 语音分割:对语音进行分段标注。 文本 文本分类:对文本的内容按照标签进行分类处理。

    来自:帮助中心

    查看更多 →

  • 最新动态

    隔的客流信息。 车牌识别技能 面向智慧商超的车牌识别技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的车牌并进行车牌识别识别结果自动上传至您的后台系统,用于后续实现其他业务。 安全帽检测技能 面向智慧园区的安全帽检测技能。本技能使用深度学习算法,实时分析视频流,自动检测园区工人未戴安全帽的行为。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了