tensorflow模型 更多内容
  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如TensorflowSpark MLlibMXNetPyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作 自定义镜像 用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0

    来自:帮助中心

    查看更多 →

  • 算法类问题

    算法类问题 模型推理时,输出错误码17,是什么原因? 技能SDK或者License如何使用和烧录? 华为HiLens技能是否支持Android 平台或ARM平台上运行? 华为HiLens上可以运行哪些TensorFlowCaffe模型? 华为HiLens支持自行开发算子吗?

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    metrics=['accuracy']) # training model.fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    .sh 模型包文件样例 模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。 Model目录下必须要包含推理脚本文件customize_service.py,目的是为开发者提供模型预处理和后处理的逻辑。 图6 推理模型mode

    来自:帮助中心

    查看更多 →

  • 导入/转换ModelArts开发模型

    导入/转换ModelArts开发模型 技能可以抽象地理解为算法模型+逻辑代码。算法模型负责关键的AI推理,逻辑代码负责处理模型推理的结果。因此在HiLens Studio开发技能时,需要将模型导入HiLens Studio。 本章节介绍如何将在ModelArts开发的模型导入HiLens S

    来自:帮助中心

    查看更多 →

  • AI模型

    AI模型 创建模型 盘古辅助制药平台支持用户创建AI模型,目前AI模型只有专业版支持。AI建模支持创建属性模型和基模型。创建属性模型是基于自定义数据,对盘古药物分子大模型进行微调,进行属性预测和迭代活性优化,实现干湿实验闭环。基模型基于自定义化合物数据,对盘古药物分子大模型进行增量预训练,提升化合物表征精度。

    来自:帮助中心

    查看更多 →

  • 模型训练

    任务运行环境 AI引擎 AI引擎AI引擎的Python版本。 创建tensorboard任务 创建Tensorboard,详情请参见创建Tensorboard。 自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格 模型训练服务提供的计算节点资源,包括CPU和GPU。

    来自:帮助中心

    查看更多 →

  • 查询AI应用列表

    model_version String 模型版本。 model_type String 模型类型。 description String 模型描述信息。 project String 模型所属租户的项目id。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。

    来自:帮助中心

    查看更多 →

  • 模型训练

    任务运行环境 AI引擎 AI引擎AI引擎的Python版本。 创建tensorboard任务 创建Tensorboard,详情请参见创建Tensorboard。 自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格 模型训练服务提供的计算节点资源,包括CPU和GPU。

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    objects 引擎运行环境。 表5 EngineAndRuntimesResponse 参数 参数类型 描述 ai_engine String AI引擎类型,目前共有以下几种类型: TensorFlow PyTorch MindSpore XGBoost Scikit_Learn Spark_MLlib

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • 模型配置文件编写说明

    模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 如何关闭Mox的warmup

    up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorflow分布式有多种执行模式,mox会通过4次执行50 step记录执行时间,选择执行时间最少的模型。 处理方法 创建训练作业时,在“运行参数”中增加参数“variable_updat

    来自:帮助中心

    查看更多 →

  • 模型验证

    模型验证 模型验证服务是什么含义? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 模型选择

    模型选择 目前,学件已经集成了几十维到上百维不同种类的特征库,源于历史各类Case和通用KPI异常检测的算法库。通过数据的特征画像,可以实现自动化的特征推荐和算法推荐。 单击“特征画像”左下方的“模型选择”。 新增“模型选择”内容,如图1所示。 图1 模型选择 单击“模型选择”代码框左侧的图标,运行代码。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 在模型管理界面,可以将归档的模型,打包成模型包。 在菜单栏中,单击“模型管理”,进入“模型管理”界面。 单击界面右上角的“新建模型包”,弹出“新建模型包”对话框。 请根据实际情况,修改模型名称、模型版本、模型描述等信息,并勾选归档的学件模型“Learnware”。 单击

    来自:帮助中心

    查看更多 →

  • 模型验证

    模型验证 模型验证界面已经预置了模型验证服务,本次不使用,仅供参考。下面会提供端到端的操作流程,帮助用户快速熟悉模型验证界面操作。 单击菜单栏中的“模型验证”,进入模型验证界面。 可以看到预置的模型验证任务“hardisk-detect”。 单击“创建”,弹出如图1所示的对话框。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了