AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    怎么度量深度学习模型计算量 更多内容
  • 方案概述

    个月开展拓客推广; 全自动化的装修设计,可实现全屋SKU可视化替换,提升个性化精装房售卖转化率30%; 方案设计定稿后,系统可自动对材料算拆单,实现设计与生产的无缝对接,避免人工信息传递错误。实时派单,可有效降低制造商的原材料备货。 方案优势 核心技术1:海量家居家装方案,训练打磨AI装修算法

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 产品概述

    感,非敏感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据

    来自:帮助中心

    查看更多 →

  • 模型转换失败怎么办?

    模型转换失败怎么办? 如果模型转换失败,可通过查看日志信息来查看模型转换失败的原因,进而针对性地解决问题。 查看模型转换日志:通过查看模型转换日志,定位模型转换失败的原因。 解决模型转换问题:针对模型转换失败的原因解决问题,此处列举常见的问题原因以及解决方法。 查看模型转换日志

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    得改进后的新模型。 创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等。仅支持1.11及以上版本集群添加GPU加速型节点。 高性能计算型:实例提供具有更稳定、超高性能计算性能的实例,可以用于超高性能计算能力、高吞吐的工作负载场景,例如科学计算。 通用计

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 方案概述

    获取模型网络权重,进行权重格式转换;支持客户进行数据集封装,打通适配模型的训练、微调、在线推理流程;支持客户进行模型的并行化改造,处理适配模型运行过程中的技术问题。 模型迁移与调优支持:调研客户业务场景,支持客户分析模型代码结构,分析迁移可行性,设计迁移方案。支持客户进行模型迁移

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 运行作业前,提示“Privacy rule verification failed”,怎么处理?

    请根据具体提示,涉及以下情形请检查并修改SQL语句: 情形一:直接查询其他参与方的唯一标识、度量数据。 情形二:试图使用唯一标识做条件过滤操作。 情形三:使用直接可以逆推度量数据的简单计算式。 情形四:将标识分组后的度量数据聚合值直接明文呈现。

    来自:帮助中心

    查看更多 →

  • 查看科学计算大模型部署任务详情

    查看科学计算模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看

    来自:帮助中心

    查看更多 →

  • 大数据分析

    泛,在车联网、金融保险、舆情分析、智慧城市等场景均有应用。 客户瓶颈 收集大数据时需要快速添加大量实例,并在收集结束后删除实例。 随着数据不断增大,企业要高效准确地处理实时数据,需要运行越来越多的CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。 竞享实例的应用

    来自:帮助中心

    查看更多 →

  • 功能介绍

    列、Himawari-8等 按需计算、动态分析,基于云端弹性算力实现大范围、多时相、长时间序列遥感影像的高效快速计算与实时分析,直观展示计算结果 图4 太湖蓝藻密度反演 支持近300个遥感计算算子、矢量分析算子和专题算法接口,满足不同业务场景的计算与分析需求;支持JavaScri

    来自:帮助中心

    查看更多 →

  • 发布训练后的科学计算大模型

    发布训练后的科学计算模型 科学计算模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产

    来自:帮助中心

    查看更多 →

  • 盘古科学计算大模型能力与规格

    在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算模型支持的具体操作: 表2 盘古科学计算模型支持的操作 模型 预训练 微调

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    无监督领域知识数据无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。 父主题: 基础问题

    来自:帮助中心

    查看更多 →

  • 最新动态

    纵向联邦作业在特征选择时,支持“样本粗筛”,能够筛选出id前缀相符的数据,达到减少数据的目的 纵向联邦作业在特征选择时,分箱选择支持“等距分箱”。等距分箱是指经过计算使得每个箱体的区间间隔保持一致。补充。 公测 创建纵向联邦学习作业 2021年6月 序号 功能名称 功能描述 阶段 相关文档 1 联邦分析引入PSI和同态加密算法

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了