AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    无监督深度学习 更多内容
  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal Policy

    来自:帮助中心

    查看更多 →

  • 训练模型

    低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 监督车牌检测工作流

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 模型选择

    xgboost是有监督的算法。模型推荐里面增加了超参搜索的功能,有给出参数取值的推荐区间。用户也可以根据实际情况修改。 如果推荐的是监督的异常检测算法,可能会同时推荐几个算法。那模型训练的时候,针对不同的算法,会分别进行模型训练,得到不同的模型,通过集成学习投票法策略,推荐得到更符合且更准确的异常检测模型。

    来自:帮助中心

    查看更多 →

  • 应用场景

    标注是KPI异常检测非常重要的数据,可以提升监督学习训练过程中KPI检测准确率,在监督学习中做算法验证评估: 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果进行确认和重新标注,并将标注数据重新用于训练,提升KPI检测准确率。 监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据处理场景介绍 ModelArts平台提供的数据处理功能,基本目的是从大量的、杂乱章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。当数据采集和接入之后,数据一般是不能直接满足训练要求的。为了保障数据质量,以免对后续操作(如数据标注、模型训练等)带

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    ta 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    大模型微调训练类问题 监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    进行有向环图(Directed Acyclic Graph,DAG)的开发,整个DAG的执行就是有序的任务执行模板,依次执行从数据标注、数据集版本发布、模型训练、模型注册到服务部署环节。如果想了解更多关于Workflow您可以参考Workflow简介。 图1 自动学习操作流程 图2

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    is_success Boolean 请求是否成功。 error_msg String 请求失败时的错误信息,请求成功时此字段。 error_code String 请求失败时的错误码,请求成功时此字段。 job_id Long 训练作业的ID。 job_name String 训练作业的名称。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    Pro>视觉套件”控制台选择“我的工作流>监督车牌检测工作流”新建应用,详细操作请见新建应用。您可以开发车牌检测模型,自主上传数据训练模型,实现车牌检测和识别功能。 图1 监督车牌检测工作流流程 表1 监督车牌检测工作流说明 流程 说明 详细指导 准备数据 在使用监督车牌检测工作流开发应用之

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    ta 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了