华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习怎么进行根据特征分类 更多内容
  • 创建声音分类项目

    创建声音分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。

    来自:帮助中心

    查看更多 →

  • 沙箱实践

    在课程筛选模块中,用户可以根据已关联实践的课程快速筛选出需要实践的内容。 图2 课程筛选 分类筛选 在沙箱实践分类模块中,用户可以根据特定的学习或实践需求选择不同的分类。 图3 分类筛选 难易程度筛选 沙箱实践分类模块还提供难易程度的筛选功能。用户可以根据自己的技能水平和学习需求,选择初级、中级或高级的实践项目。

    来自:帮助中心

    查看更多 →

  • 基本概念

    有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种

    来自:帮助中心

    查看更多 →

  • 安全服务

    flood等所有DDoS攻击方式)。可根据租用带宽及业务模型自助配置防护阈值参数,系统检测到攻击后通知用户进行网站防御。 更多DDoS高防详情可参见Anti-DDoS流量清洗产品介绍。 Web应用防火墙 Web应用防火墙(Web Application Firewall,WAF)对网站业务流量进行多维度检测

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用

    来自:帮助中心

    查看更多 →

  • 概述

    概述 图像搜索 Image Search )基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助您从指定图库中搜索相同或相似的图片。 图像搜索服务以开放API(Application Programming Interface,应用程序编程接口)的

    来自:帮助中心

    查看更多 →

  • 指标分类

    指标分类 主机OS指标 AOM主机OS指标详情请参考指标总览 SAP系统指标 SAP系统指标分为SAP HANA指标、SAP NetWeaver ABAP与Java应用指标,详情请参考表1、表2: 表1 SAP HANA指标 指标组 指标名 指标含义 单位 database_version

    来自:帮助中心

    查看更多 →

  • 资源分类

    资源分类 管理员可以在此进行资源分类的设置,该分类贯穿企业大学学习、考试、测评、调研等不同使用场景,将企业的知识储备按一定依据(如:业务类型或职能等)划分为不同的类目以便于管理。学员可以通过资源分类快速筛选感兴趣的内容自行学习。 入口展示 图1 入口展示 新建资源分类 操作路径:

    来自:帮助中心

    查看更多 →

  • 场景分类

    场景分类 在场景分类页面自动化运维已定义了服务场景的类型,具体如下: 故障处理 日常巡检 软件部署 云服务场景 通用场景 父主题: 设置

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类

    来自:帮助中心

    查看更多 →

  • 功能咨询

    ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical features)吗 模型可视化作业中各参数的意义? 如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练?

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    创建特征工程 用户可以在“数据集详情”页面基于数据集实例新建特征工程,对数据集执行特征操作;也可以在“特征工程管理”页面新建特征工程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击“特征工程管理”页面的。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击特征工程首页右上角的图标。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程 配置“特征处理”对话框参数,具体参见表1。 表1 特征工程参数配置说明 参数名称 参数说明 工程名称 特征工程的名称。 只能以字母(A~Z

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • APP特征信息无效

    APP特征信息无效 整改通知: 您填写的APP公钥或MD5值为无效信息。 可能原因: 出现此情况,可能您填写的APP公钥或MD5值为无效字段。 整改建议: 请参考变更备案,填写新的APP公钥或MD5值,确保备案APP的特征信息与实际信息保持一致。 父主题: APP信息

    来自:帮助中心

    查看更多 →

  • 概要

    概要 本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 修订记录

    模型管理界面新增推理服务入口、新增创建联邦学习案例入口,对应模型管理章节截图更新。 Jupyterlab算子菜单位置及算子分组变更,对应特征工程章节菜单入口描述变更。 Jupyterlab特征工程选择数据增加时序数据选择,并支持多数据选择,对应特征工程章节操作截图全量更新。 2020-03-30

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了