AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习特征手工特征 更多内容
  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程中已经预置了两个特征处理工程,这里暂不使用,会提供端到端的操作流程,帮助用户快速熟悉特征工程界面操作。 如果需要了解特征工程操作详情,可查看模型训练服务《用户指南》中的“特征工程”章节内容。 无故障硬盘训练数据集特征处理 单击菜单栏中的“特征工程”,进入特征工程首页,如图1所示。

    来自:帮助中心

    查看更多 →

  • 特征工程

    行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 全局特征信息文件

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

    来自:帮助中心

    查看更多 →

  • 特征工程简介

    特征工程简介 用户可以通过特征工程对数据集进行数据处理、特征组合、特征转换等特征处理,最大限度的从原始数据中提取特征以供模型训练使用。此外,用户还可以将优质的特征工程发布成服务,以服务的形式对具备完全相同特征的数据进行预处理。 特征工程相关的基本概念: 特征工程:对数据进行特征处理操作的工程。

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    创建特征工程 用户可以在“数据集详情”页面基于数据集实例新建特征工程,对数据集执行特征操作;也可以在“特征工程管理”页面新建特征工程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击“特征工程管理”页面的。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击特征工程首页右上角的图标。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程 配置“特征处理”对话框参数,具体参见表1。 表1 特征工程参数配置说明 参数名称 参数说明 工程名称 特征工程的名称。 只能以字母(A~Z

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • APP特征信息无效

    APP特征信息无效 整改通知: 您填写的APP公钥或MD5值为无效信息。 可能原因: 出现此情况,可能您填写的APP公钥或MD5值为无效字段。 整改建议: 请参考变更备案,填写新的APP公钥或MD5值,确保备案APP的特征信息与实际信息保持一致。 父主题: APP信息

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    所有输出数据(用户物品特征特征映射、域特征值数目统计结果、训练集、测试集)的存储都路径,文件夹。 全局特征配置文件路径(global_features_information_path) 是 String 该文件为JSON格式,包含特征名、特征大类、特征值类型。全局特征文件详细内容可以通过查询全局特征配置获取。

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    提交特征工程作业 提交特征工程作业 查询全局特征配置 父主题: 作业相关API

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了