AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习一个epoch 更多内容
  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎有TensorFlow、PyTorch、MindSp

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 在Workflow中更新已部署的服务

    default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。 表3 LoRA参数配置说明 参数英文名 参数中文名 参数说明 lora_rank 秩 LoRA微调中的秩。

    来自:帮助中心

    查看更多 →

  • 发布Workflow到ModelArts

    default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),

    来自:帮助中心

    查看更多 →

  • 使用MaaS调优模型

    ,其他模型的每一个Iterations会消耗32条训练数据。 当数据集是数百量级,则建议迭代4~8个epochepoch表示整个数据集被完整地用于一次训练的次数);当数据集是数千量级,则建议迭代2~4个epoch;当数据集是更大数量,则建议迭代1~2个epoch。 总Iterations

    来自:帮助中心

    查看更多 →

  • 训练作业卡死检测

    m_worker。 常见案例:训练最后一个epoch卡死 问题现象 通过日志查看数据切分是否对齐,如果未对齐,容易导致部分进程完成训练退出,而部分训练进程因未收到其他进程反馈卡死,如下图同一时间有的进程在epoch48,而有的进程在epoch49。 loss exit lane:0

    来自:帮助中心

    查看更多 →

  • 编排Workflow

    default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • 创建多机多卡的分布式训练(DistributedDataParallel)

    for epoch in range(1, max_epoch + 1): model.train() train_loss = 0 ### 分布式改造,DDP sampler, 基于当前的epoch为其设置随机数,避免加载到重复数据

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配。

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦分箱和IV计算作业

    learning_rate 否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1 tree_num 否 Integer 树数量,最小值1 tree_depth 否 Integer 树深度,最小值1 split_num

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了