AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习超参数epoch 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 执行作业

    可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。 常规配置:通过界面点选算法使用的常规参数,具体支持的参数请参考表1。

    来自:帮助中心

    查看更多 →

  • 模型训练存储加速

    业异常。 然后在参或者环境变量中设置checkpoint和数据的挂载路径。 图3 在参或者环境变量中设置checkpoint和数据的挂载路径 训练存储加速的代码样例(PyTorch版reload ckpt) PyTorch模型保存有两种方式。 仅保存模型参数 state_dict

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    # 获取保存的epoch,模型会在此epoch的基础上继续训练 start_epoch = checkpoint['epoch'] start = datetime.now() total_step = len(train_loader) for epoch in range(start_epoch

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    或模型参数规模很大,可以使用较小的批量大小,反之可以使用较大的批量大小。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中的实际情况动态调整。 学习率(learning_rate) 0~1 1e-6~5e-4 学习率是在梯度下降的过程中更新权重时的参数,

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。 图12 新建工程 支持模型参数配置,包括:backbone、实时样本增强(随机翻转、裁切、对比度亮度增强、归一化等)、loss函数、优化器等参数,并支持

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    的深刻理解,这依赖于经验。 调整参数参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。

    来自:帮助中心

    查看更多 →

  • 最新动态

    帽检测技能。 人脸检测技能 面向智慧商的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备 > 绑定源数据”。界面新增“绑定迁移前的源数据”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明 数据集 迁移前源数据对应的数据集。 数据集实例 迁移前源数据的数据集实例。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 日志提示“UnboundLocalError: local variable 'epoch'”

    variable 'epoch'” 问题现象 使用YOLOv5算法增量训练时出现如下报错:UnboundLocalError: local variable 'epoch' referenced before assignment。 原因分析 增量训练作业设置的epochs参数有误,该问题是由YOLOv5的增量训练机制引起:

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型 描述 job_instance_id String 作业实例id,最大长度32 请求示例 post

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    空间ID,最大32位,由字母和数字组成 job_id 是 String 任务id,最大32位,由字母和数字组成 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。由一个或多个字母数字+-=符号组成。 通过调用接口获取用户Token接口获取。

    来自:帮助中心

    查看更多 →

  • 获取横向联邦学习作业详情

    获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    保存横向联邦学习作业 功能介绍 保存横向联邦学习作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 方案概述

    AI空间算法:AI识别空间大小、动线、风水等维度参数,做到空间合理分区、科学布置; 模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI算力,使能分场景:利用AI算力分技术,可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了