AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中的epoch 更多内容
  • 深度学习模型预测

    说明 field_name 是 数据在数据流字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上完整路径,包括模型结构和模型权值。 is_dl4j_model

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    说明 field_name 是 数据在数据流字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上完整路径,包括模型结构和模型权值。 is_dl4j_model

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 执行作业

    体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    Learning)是机器学习领域中一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识基础上,增加新训练数据到当前训练流程,扩展当前模型知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限问题;另一方面,增量训练节约了重新训练需要消耗大量算力、时间以及经济成本。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    node使用率已经超过了80%,可能导致在这些分区上无法创建新文件 guestos.filesystem.invalid_device fstab设备检查 当前实例/etc/fstab文件配置某个设备不存在,可能会导致实例无法启动。 guestos.filesystem

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 日志提示“UnboundLocalError: local variable 'epoch'”

    OLOv5增量训练机制引起: 若第二次增量训练epochs数值和第一次常规训练epochs数值设置一样,则会报错。 若第二次增量训练epochs数值小于第一次常规训练epochs数值,则增量训练会出现少训练一个epoch现象。 处理方法 第二次增量训练设置epoch

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可以按“进行、已完成,必修,选修”过滤,可以按课程标题搜索

    来自:帮助中心

    查看更多 →

  • 模型训练存储加速

    加载带来I/O挑战,华为云提供了基于 对象存储服务 OBS+高性能弹性文件服务SFS TurboAI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储数据访问,并将生成结果数据

    来自:帮助中心

    查看更多 →

  • 设置断点续训练

    成就被中断,下一次训练可以在上一次训练基础上继续进行。这种方式对于需要长时间训练模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkpoint机制是:在模型训练过程,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)

    来自:帮助中心

    查看更多 →

  • 如何关闭Mox的warmup

    如何关闭Moxwarmup 问题现象 训练作业moxTensorflow版本在运行时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小学习率训练几个epoch(warmup),由于网络参数是随机初始化,如果一开始就采用较大学习率会出现数值不稳定的问题,这是使用warm

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10整数。 分类阈值

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了