GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习训练时gpu的内存 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。De

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • GPU加速型

    NVLink技术,实现GPU之间直接通信,提升GPU之间数据传输效率。能够提供超高通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、分子建模、基因组学等领域都能表现出巨大计算优势。 规格 表8 P2vs型 弹性云服务器 规格 规格名称

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下模型分布式训练,大幅度提升模型训练速度,满足海量样本数据加速训练需求。 图17

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    交互。可通过如下方式进行调整优化。 优化原理 对于ModelArts提供GPU资源池,每个训练节点会挂载500GBNVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里软件无法满足您程序运行需求,您还可以基于这些基础镜像制作一个新镜像并进行训练训练作业预置框架介绍

    来自:帮助中心

    查看更多 →

  • 训练任务

    常规训练:基于数据集和用户算法训练新模型。 图4 增量训练 增量训练:基于用户导入模型或已完成训练模型版本(可通过${MODEL}获取该模型版本文件路径)和新数据集使用选择算法再次进行训练,生成精度更高新模型。同常规训练不同是需要额外选择输入模型和版本。 选择数据集。 用户从数据资产中数据集

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    。例如,HPA是典型调度层弹性组件,通过HPA可以调整应用副本数,调整副本数会改变当前负载占用调度容量,从而实现调度层伸缩。 节点弹性伸缩:即资源层弹性,主要是集群容量规划不能满足集群调度容量,会通过弹出E CS 或CCI等资源方式进行调度容量补充。CCE容器实例弹

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    个。 用户在Notebook列表所有文件读写操作是基于所选择OBS路径下内容操作。 参数填写无误后,单击“立即创建”,创建Notebook。 步骤3:预览AutoGenome案例 打开创建Notebook。 在Notebook根目录下“AutoGenome-Examp

    来自:帮助中心

    查看更多 →

  • 查询作业资源规格

    String 调用失败错误信息。 调用成功无此字段。 error_code String 调用失败错误码,具体请参见错误码。 调用成功无此字段。 spec_total_count Integer 作业资源规格总数。 specs specs结构数组 资源规格参数列表,如表4所示。

    来自:帮助中心

    查看更多 →

  • 方案概述

    随着全球科技竞争加剧和国际制裁背景下,中国企业对国产自主算力需求迅速增长。昇腾行业大模型适配服务凭借其强大高性能计算能力和深度学习算法优化,成为推动国内信创产业发展关键力量。而各地国产化算力中心建设完成后,客户常因技术栈差异面临软硬件兼容性和使用困难,缺乏对华为昇腾AI平台深入了

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为 服务器 GPU编号,可以为0,1,2,3等,表明对程序可见GP

    来自:帮助中心

    查看更多 →

  • 约束与限制

    Pod规格限制项 限制取值范围 PodCPU 0.25核-32核,或者自定义选择48核、64核。 CPU必须为0.25核整数倍。 Pod内存 1GiB-512GiB。 内存必须为1GiB整数倍。 PodCPU/内存配比值 在1:2至1:8之间。 Pod容器 一个Pod内最多支持5个容器。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”页面,在模型列表操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适阈值,然后单击“确定”。 用户问法与标准问相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    2),是OpenAI组织在2018年于GPT模型基础上发布新预训练模型,是一个基于Transformer且非常庞大语言模型。它在大量数据集上进行了训练,直接运行一个预训练GPT-2模型:给定一个预定好起始单词或者句子,可以让它自行地随机生成后续文本。 环境准备 在华为云ModelArts

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    可选项。当选用静态数据长度,可将不足于文本处理最大长度数据弥补到文本处理最大长度;当选用动态数据长度则去掉此参数。 deepspeed examples/deepspeed/ds_z3_config.json 可选项。用于指定DeepSpeed配置文件相对或绝对路径。D

    来自:帮助中心

    查看更多 →

  • 方案概述

    )保存和加载。训练数据读取要尽量读得快,减少计算对 I/O 等待,而 Checkpoint主要要求高吞吐、减少训练中断时间。 文件接口方式数据共享访问:由于 AI 架构需要使用到大规模计算集群(GPU/NPU服务器),集群中服务器访问数据来自一个统一数据源,即一个

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值遇到困难,导致数值精度损失。 综上所述,BF16因其与FP

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值遇到困难,导致数值精度损失。 综上所述,BF16因其与FP

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了