AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练集验证集测试集分配 更多内容
  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练型横向联邦作业流程

    方、对方的本地数据,此外需将已方的数据设为评估数据。横向联邦中,需要确保不同参与方的数据集结构完全一致。 图3 配置数据 保存并执行作业。单击下方的“保存并执行”按钮,即可发起执行横向联邦学习作业。 单击“历史作业”按钮,查看当前作业的执行情况。 单击“计算过程”按钮可以查看作业的具体执行计划。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三种算法类型,XGBoost支持“分类”和“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据作为整个作业的数据,必须选择一个当前代理的数据,另一个数据可以来自空间中的任

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 准备盘古大模型训练数据集

    准备盘古大模型训练数据 训练数据创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据 检测数据质量 清洗数据(可选) 发布数据 创建一个训练数据

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data)。

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练的数据预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。如果未进行数据预处理,则会自动执行scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据训练。De

    来自:帮助中心

    查看更多 →

  • 模型训练

    取数据相关的超参,包括训练数据实例、测试数据实例等。数据超参支持输入多个,可以通过“增加”和图标,来增加或删除运行超参。 详细SDK说明,请在模型训练服务首页右下角的浮框中,依次单击“帮助中心 > SDK文档”查看。 当前算法已预置训练测试数据,可使用默认值训练。 超参配置

    来自:帮助中心

    查看更多 →

  • 发布数据集

    发布数据 刚创建的数据在未发布状态下,无法应用于模型训练,数据创建、清洗完成后需要执行“发布”操作才可以将该数据用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据”页签找到未发布的数据,单击操作列“版本发布”执行发布数据集操作。

    来自:帮助中心

    查看更多 →

  • 发布数据集

    发布数据 企业A将自己的需要预测的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建用于预测的数据。 企业A预测数据如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据,没有发布新的数据。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

  • 发布数据集

    发布数据 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据。 企业A的数据如下: 大数据厂商B的数据如下: 创建数据后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TI CS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 数据集简介

    见数据操作。 数据页面 “数据”页面包含了左侧数据目录区域和右侧数据详情区域。在左侧区域中,可以新建数据、导入数据的数据实例、删除数据。在右侧区域,可以通过列表的形式查看数据详情、对数据执行特征工程、基于数据新建特征工程、跳转模型训练界面、删除数据。“数据”页面详

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了