AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练集 更多内容
  • 编辑代码(简易编辑器)

    :重命名调试文件、推理文件等文件。 :删除文件或文件夹。 :刷新代码目录。 数据目录:包含数据文件夹及数据实例。系统支持通过Spread编辑器打开csv文件,支持用户在训练工程编辑界面打开数据实例。 任务目录:包含联邦学习训练工程已经执行及正在执行的训练任务存储目录结构。包括codes文件、log文件、meta文件、model文件等。

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    ignored due to the use of a custom kernel" 数据下载和预处理。 本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据。 下载数据。 wget https://huggingface.co/bigscience/mi

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据的特征数据不够理想,而此数据的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据和目标数据导入系统,详细操作请参见数据。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 创建物体检测项目

    可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 创建文本分类项目

    对项目的简要描述。 “数据” 可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • ModelArts

    发布免费模型 数据的分享和下载 AI Gallery的资产集市提供了数据的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据,存储至当前帐号的OBS桶或ModelArts的数据列表。分享者可将已处理过的数据发布至AI Gallery。 下载数据 AI Gallery发布数据集

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    alpaca_en_demo 指定用于训练的数据,数据都放置在此处为identity,alpaca_en_demo表示使用了两个数据,一个是 identity,一个是alpaca_en_demo。如选用定义数据请参考准备数据(可选) template qwen 必须修改。用于指定模板。如果设置

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据的次数。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    在弹出的界面,继续配置联邦训练作业的参数,参数配置参考表1。 图3 配置参数 “数据配置文件”的“可选数据列表”: LOCAL运行环境,展示的是通过本地连接器发布的本地数据。 “训练型作业”同一个计算节点只能选一个数据,但是一个作业必须要选两个及两个以上的数据才能做训练。 表1 作业参数说明

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    据处理”中对 MRS 中已标注数据进行数据处理,最后通过“运营中心>数据发布”发布数据。在“模型训练服务”中,可以订阅数据进行模型训练。 图1 标注后的数据处理流程图 父主题: 时序数据标注

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 模型评估

    模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算

    来自:帮助中心

    查看更多 →

  • 训练数据集预处理说明

    训练数据预处理说明 以 llama2-13b 举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据预处理,并检查是否已经完成数据预处理。 如果已完成数据预处理,则直接执行训练任务。若未进行数据预处理,则会自动执行 scripts/llam

    来自:帮助中心

    查看更多 →

  • 训练任务

    模型和版本。 选择数据。 用户从数据资产中的数据和数据缓存中选择数据,最多支持添加5个数据。 图5 选择数据 单击“创建”,在任务列表或分组可查看新建训练任务。 训练任务相关操作 在“训练任务”列表,可对训练任务进行以下操作: 表1 训练任务相关操作 任务 操作步骤 查找任务

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    在创建训练作业时,训练的输入参数位置可以直接填写OBS桶路径。 当训练数据的数据未标注或者需要进一步的数据预处理,可以先将数据导入ModelArts数据管理模块进行数据预处理。在创建训练作业时,训练的输入参数位置可以选择数据管理模块的数据。 创建调试训练作业 调试训练作业 模

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了