中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习需要多少训练数据 更多内容
  • 创建有监督训练任务

    量微调)训练参数说明、表5。 在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    具体案例参考使用预置镜像制作 自定义镜像 用于训练模型。 场景二:已有本地镜像满足代码依赖的要求,但是不满足ModelArts训练平台约束,需要适配。 具体案例参考已有镜像迁移至ModelArts用于训练模型。 场景三: 当前无可使用的镜像,需要从0制作镜像(既需要安装代码依赖,又需要制作出的镜像满足Mo

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使模型效果最优

    训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 预训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 最新动态

    Studio,以手机摄像头实时的视频流作为技能输入,查看技能输出。 商用 2020年12月 序号 功能名称 功能描述 阶段 1 支持开发可训练技能 使用可训练技能模板开发技能,可无代码上传训练数据,提高模型精度,开发出契合行业场景的技能。 商用 2 支持HiLens Studio专业版按需套餐包计费 HiLens

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    其中,训练配置选择LLM(大语言模型),训练类型选择自监督训练,根据所选模型配置训练参数。 表1 自监督训练参数说明 参数名称 说明 模型类型 选择“LLM”。 训练类型 选择“自监督训练”。 训练模型 选择训练需要的模型,模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。 训练参数说

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    t9处理器的AI训练 服务器 ,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习深度学习训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习训练推理、科

    来自:帮助中心

    查看更多 →

  • 产品优势

    间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离,用户无需关心计算任务拆

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据J

    来自:帮助中心

    查看更多 →

  • 学习项目

    别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • ModelArts

    Gallery的资产集市提供了数据集的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要数据集,存储至当前帐号的OBS桶或ModelArts的数据集列表。分享者可将已处理过的数据集发布至AI Gallery。 下载数据集 AI Gallery发布数据集 Notebook案例的分享和使用

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    接入,即时体验”的效果。 当开发者对希望对模型进行开发和训练,AI Gallery为零基础开发者,提供无代码开发工具,快速推理、部署AI应用;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 产品术语

    用多租户隔离、加密存储等安全技术,保障数据的全生命周期安全。 数据集 某业务下具有相同数据格式的数据逻辑集合。 数据集实例 数据集的实例,有具体的数据。 T 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了