中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习需要多少训练数据 更多内容
  • 预训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    自然语言处理 大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    8。 重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    旧版训练迁移至新版训练需要注意哪些问题? 新版训练和旧版训练的差异主要体现在以下3点: 新旧版创建训练作业方式差异 新旧版训练代码适配的差异 新旧版训练预置引擎差异 新旧版创建训练作业方式差异 旧版训练支持使用“算法管理”(包含已保存的算法和订阅的算法)、“常用框架”、“自定义”(即 自定义镜像 )方式创建训练作业。

    来自:帮助中心

    查看更多 →

  • 基于NL2JSON助力金融精细化运营

    'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    或下划线开头。 数据配置 数据集 在下拉列表中选择“我创建的”或“我收藏的”数据集。 数据集版本 在下拉列表中选择数据集版本。 训练数据比例 训练数据比例是指用于训练模型的数据集与测试数据集的比例。通常情况下,会将数据集分成训练集和测试集两部分,其中训练集用于训练模型,测试集用于评估模型的性能。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    关键,所以客户需要进行业务容错性改造,实现任何一个或一些实例出现故障(被回收)时,可自行替换并继续运行,无需任何人工干预。 实时数据分析 场景概述 实时数据分析是指用适当的统计分析方法实时对收集来的大量数据进行分析,主要包含数据采集,加工,清洗,分析等环节。实时数据分析应用十分广

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么

    来自:帮助中心

    查看更多 →

  • 产品概述

    邀请云租户作为数据提供方,动态构建 可信计算 空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方的敏感数据在具有安全支撑的聚合计算节点中实现安全统计。 计算节点 数据参与方使用数

    来自:帮助中心

    查看更多 →

  • 准备训练数据

    准备训练数据 在创建抽取模型时,需要您提前准备用于训练模型的数据并上传至OBS目录,数据格式为txt文本的自然语言短句。KG服务当前支持的数据类型请参见训练数据类型介绍。 准备数据流程如下: 准备待标注的数据 定义三元组类型(schema) 标注数据 上传至OBS 准备待标注的数据

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 应用场景

    景的运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 场景介绍

    DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    量微调)训练参数说明、表5。 在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。

    来自:帮助中心

    查看更多 →

  • 预训练

    训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使模型效果最优

    训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    具体案例参考使用预置镜像制作自定义镜像用于训练模型。 场景二:已有本地镜像满足代码依赖的要求,但是不满足ModelArts训练平台约束,需要适配。 具体案例参考已有镜像迁移至ModelArts用于训练模型。 场景三: 当前无可使用的镜像,需要从0制作镜像(既需要安装代码依赖,又需要制作出的镜像满足Mo

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了