需求管理 CodeArts Req

CodeArts Req(原ProjectMan)是华为多年研发实践沉淀的需求管理与团队协作服务,内置多种开箱即用的场景化需求模型和对象类型(需求/缺陷/任务等),可支撑IPD、DevOps、精益看板等多种研发模式,还包含跨项目协同、基线与变更管理、自定义报表、Wiki在线协作、文档管理等功能。

超低价格套餐供您选择

了解详情            

    深度学习是如何迭代训练的 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。De

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 执行作业

    体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值多棵树预测值加权和。取值范围为1~50整数。 树深度

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    向上前进步长参数。默认0.001。 数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长的参数。默认0

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下模型分布式训练,大幅度提升模型训练速度,满足海量样本数据加速训练需求。 图17

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量

    来自:帮助中心

    查看更多 →

  • 迭代计划

    迭代计划 如何合理规划Sprint时间盒 如何移动迭代中需求变更后看板中任务卡片 父主题: Scrum项目最佳实践

    来自:帮助中心

    查看更多 →

  • 迭代开发

    迭代开发 如何在软件开发团队中管理突发性任务 如何解决开发团队中任务没人领取问题 父主题: Scrum项目最佳实践

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    如何调整训练参数,使盘古大模型效果最优 模型微调参数选择没有标准答案,不同场景,有不同调整策略。一般微调参数影响会受到以下几个因素影响: 目标任务难度:如果目标任务难度较低,模型能较容易学习知识,那么少量训练轮数就能达到较好效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。

    来自:帮助中心

    查看更多 →

  • 新增迭代

    否 String piid,层级关系:pi -> 迭代 -> 需求 表4 WorkItemInfo 参数 是否必选 参数类型 描述 work_item_id String 工作项编号 has_child Boolean 是否有子需求 is_open Boolean 是否展开

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    步骤: 选择合适模型:根据任务目标选择适当模型。 模型训练:使用处理后数据集训练模型。 超参数调优:选择合适学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好性能。 开发阶段关键平衡模型复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    从上面两张表可以看出: (1)训练轮数对于联邦学习模型性能影响不大,这主要是由于乳腺癌数据集分类相对简单,且数据集经过了扩充导致; (2)增大每个参与方本地模型训练迭代次数,可以显著提升最终联邦学习模型性能。 参与方数据量不同时,独立训练对比横向联邦训练准确率 本节实验不再将训练集均匀划分

    来自:帮助中心

    查看更多 →

  • 准备工作

    Parallelism)大规模深度学习训练中常用并行模式,它会在每个进程(设备)或模型并行组中维护完整模型和参数,但在每个进程上或模型并行组中处理不同数据。因此,数据并行非常适合大数据量训练任务。 TP:张量并行也叫层内并行,通过将网络中权重切分到不同设备,从而降低单个设备显存消耗

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么自动学习? 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelAr

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型模板名,决定训练和预测调用函数接口

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型模板名,决定训练和预测调用函数接口

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    数决定训练时所使用数据。 ip name AiEngine端所部署host ip地址。 port integer AiEngine端所侦听端口号。 max_epoch integer 模型每次训练迭代次数上限。 learning_rate real 模型训练学习速率,推荐缺省值1。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”页面,在模型列表操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适阈值,然后单击“确定”。 用户问法与标准问相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    过程。 数据清洗在数据校验基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入正样本和负样本,对数据进行清洗,保留用户想要类别,去除用户不想要类别。 数据选择:数据选择一般指从全量数据中选择数据子集过程。 数据可以通过相似度或者深度

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    在弹出界面,继续配置联邦训练作业参数,参数配置参考表1。 图3 配置参数 “数据配置文件”“可选数据列表”: LOCAL运行环境,展示通过本地连接器发布本地数据。 “训练型作业”同一个计算节点只能选一个数据集,但是一个作业必须要选两个及两个以上数据集才能做训练。 表1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了