AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习深度工作 更多内容
  • 基因容器(GeneContainer Service)

    基因容器(GeneContainer Service)提供云端基因测序解决方案,支持DNA、RNA、液态活检等主流生物基因测序场景。基于轻量级容器技术,结合大数据、深度学习算法,优化官方标准算法,提供灵活可定制的测序流程、秒极可伸缩的高可靠资源 产品介绍 图说E CS 立即使用 立即使用 成长地图 由浅入深,带您玩转GCS

    来自:帮助中心

    查看更多 →

  • 内网采集

    为确保采集过程具备充分的系统访问权限,从而能够获取到必要的信息和数据。对主机深度采集的凭证要求如下: 对Linux主机进行深度采集时,请添加Root账号和密码作为采集凭证。 对Windows主机进行深度采集时,请添加Administrator账号和密码作为采集凭证。 创建IDC采集任务

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 图像搜索SDK简介

    图像搜索 SDK简介 图像搜索概述 图像搜索( Image Search )基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助您从指定图库中搜索相同或相似的图片。 图像搜索服务以开放API(Application Programming Interf

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 欢迎使用基因容器服务

    欢迎使用基因容器服务 感谢您更深入的了解、学习并使用基因容器服务(GeneContainer Service,GCS)。 基因容器服务GCS提供云端基因分析解决方案,支持DNA、RNA、液态活检等主流生物基因分析场景。基因容器基于轻量级容器技术,结合大数据、深度学习算法,优化官方标准算法,为您

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • APIServer视图

    P99写请求时延 图2 工作队列指标 表2 工作队列指标说明 指标名称 单位 说明 工作队列增加速率 操作次数/秒 APIServer每秒工作队列增加的次数 工作队列深度工作队列深度 工作队列时延(P99) 毫秒 APIServer请求P99在工作队列中停留时间 图3 资源指标

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online快速开发、发布 WeLink 应用。 4-基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 方案概述

    创建一个EventGrid触发器,该触发器关联事件网格 EG,默认创建一个事件订阅,事件源为OBS应用事件源,用于自动触发函数执行相关业务逻辑。 方案优势 高识别 该方案基于深度学习技术,对特定领域场景的 语音识别 进行优化,识别率高。 稳定可靠 该方案成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 方案概述

    即可自动对音频内容进行审核。 降本增效 按需付费,用户只需要花费少量成本,即可代替人工审核,极大地降低了人力成本。 准确率高 基于改进的深度学习算法,在复杂语音环境中也能有高准确率。 约束和限制 部署该解决方案之前,您需 注册华为账号 并开通华为云,完成实名认证,且账号不能处于欠费或

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 方案概述

    或者效益最大化; 数据缺乏安全性高、维护成本低的云资源支持业务场景应用。 方案架构 图1 架构图 方案优势 落地性强:自主研发目标识别和深度学习融合的耘镜平台,目前已服务全国超过4亿亩耕地 AI能力强:方案结合华为云EI服务,地物自动识别效率超过95%,作物长势监测8天自动化更新

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    Prop,可以调整学习率。取值范围:(0,1)。 权重衰减系数 通过在损失函数中加入与模型权重大小相关的惩罚项,鼓励模型保持较小的权重,防止过拟合或模型过于复杂,取值需≥0。 学习学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。

    来自:帮助中心

    查看更多 →

  • 内网采集

    为确保采集过程具备充分的系统访问权限,从而能够获取到必要的信息和数据。对主机深度采集的凭证要求如下: 对Linux主机进行深度采集时,请添加Root账号和密码作为采集凭证。 对Windows主机进行深度采集时,请添加Administrator账号和密码作为采集凭证。 创建IDC采集任务

    来自:帮助中心

    查看更多 →

  • 内网发现与采集

    为确保采集过程具备充分的系统访问权限,从而能够获取到必要的信息和数据。对主机深度采集的凭证要求如下: 对Linux主机进行深度采集时,请添加Root账号和密码作为采集凭证。 对Windows主机进行深度采集时,请添加Administrator账号和密码作为采集凭证。 创建内网采集任务

    来自:帮助中心

    查看更多 →

  • 产品概述

    据源注册、隐私策略(敏感,非敏感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据

    来自:帮助中心

    查看更多 →

  • 附录

    部署您的容器化应用,以及方便的管理和维护。 volcano插件:Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Flink Operator:通过Flink

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了