AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习参数量样本量比例 更多内容
  • 查看/标识/取消/下载样本

    样本”或“学习案例样本”页签,单击样本下方的/。 单个下载样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的或单击样本,在样本详情页面单击样本中的 按任务归类 单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 方案概述

    华为云自研渲染引擎:利用 云服务器 的GPU能力,实现离线与实时的光线追踪渲染,照片级真实光影效果,兼容存量材质格式对接,免去设计师手动材质调,大幅提升设计效率。 图6 GPU 图7 调 核心技术3:3D云设计+3D云制造同源一体化软件 设计生产一体化:3D云设计、3D云订单、排产软件同源一体化,同一

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    annotation_output String 主动学习标注结果输出路径。 collect_rule String 样本收集规则,默认为全收集规则“all”。当前仅支持全收集规则“all”。 collect_sample Boolean 是否启用样本收集。可选值如下: true:启用样本收集(默认值) false:不启用样本收集

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 新建固定比例外呼

    新建固定比例外呼 固定比例外呼是按比例分配给空闲座席来提高呼叫效率的外呼方式。比例可根据业务目标、空闲座席数量适当调整。固定比例外呼可与潜在客户快速建立联系,在大批量待呼号码场景下,使用固定比例外呼和其他外呼方式相比,优势明显。 前提条件 用户账号的平台角色请设置成话务员。 联系

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 支持将平台资产中心预置的部分模型作为微调前基础模型,也可以选择微调后的新模型作为基础模型再次进行微调。

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。 重新训练 对第一次训练无影响,仅影响任务重跑。

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    String 样本对齐运行状态。 NEW, ACCEPTED, RUNNING, SUCCEEDED, FAILED, TERMINATED, PENDING, SUBMITING, DEPLOYING, TERMINATING; data_count Long 样本对齐数据 obs_path

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个类别的图片不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个类别的图片不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 产品术语

    TCP/IP应用程序。 S 数据采样 在其他特征操作前先对数据集进行样本采样。数据采样后所有的特征操作,都是基于采样后的数据进行处理,可以减少特征操作处理的数据,提升特征操作的处理速度。 数据服务 支持网络工、性能、告警等各种类型数据的快速采集。一方面提供大量工具提升 数据治理

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个类别的图片不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个类别的图片不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个类别的图片不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 使用MaaS调优模型

    ChatGLM3-6B 全微调 2000 2700 LoRA微调 2300 3100 GLM-4-9B 全微调 1800 2100 LoRA微调 2400 2800 Llama2-13B 全微调 1300 1800 LoRA微调 1400 1900 Llama2-70B 全微调 300

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: sft do_train: true # 全 finetuning_type: full # lora # finetuning_type: lora # lora_target: all

    来自:帮助中心

    查看更多 →

  • 获取NFT总发行量、流转量、区块高度、总交易数量

    获取NFT总发行、流转、区块高度、总交易数量 功能介绍 获取NFT总发行、流转、区块高度、总交易数量 URI GET /v1/open/summary 请求参数 无 响应参数 状态码: 200 表1 响应Body参数 参数 参数类型 描述 nft_publish_total

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了