GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu利用率低显存高 更多内容
  • GPU故障处理

    执行cat /proc/xgpu/{GPU卡序号}/meminfo,注意替换命令中的{GPU卡序号}为步骤2获取的GPU卡序号,观测GPU虚拟化的可用显存。 比较步骤2和步骤3的可用显存。 由于GPU厂商的驱动程序,本身就会占用一定量的物理显存,量级在300MB左右,这属于正常现象。例如Tesla

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    弹性伸缩:支持工作负载和节点的弹性伸缩,可以根据业务需求和策略,经济地自动调整弹性计算资源的管理服务服务治理:深度集成应用服务网格,提供开箱即用的应用服务网格流量治理能力,用户无需修改代码,即可实现灰度发布、流量治理和流量监控能力。 容器运维:深度集成容器智能分析,可实时监控应用及资源,支持采集、管理、分析日

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • 显存溢出错误

    显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already

    来自:帮助中心

    查看更多 →

  • 显存溢出错误

    显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already

    来自:帮助中心

    查看更多 →

  • 显存溢出错误

    显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already

    来自:帮助中心

    查看更多 →

  • 显存溢出错误

    显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already

    来自:帮助中心

    查看更多 →

  • 显存溢出错误

    显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already

    来自:帮助中心

    查看更多 →

  • 调度算法

    preempt true/false false 允许 CCE Standard/ CCE Turbo 开启抢占调度后,在集群资源不足的场景,优先级作业将会驱逐优先级作业,获取资源运行 抢占能力与pod延迟创建能力不可同时开启 资源碎片最小化调度 将Pod调度到资源使用较高的节点(尽量不往空白节点分配),以减少资源碎片。

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • 使用dcgm-exporter监控GPU指标

    使用dcgm-exporter监控GPU指标 应用场景 集群中包含GPU节点时,需要了解GPU应用使用节点GPU资源的情况,例如GPU利用率显存使用量、GPU运行的温度、GPU的功率等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,或者根据GPU指标设置告警规则。本文基于开源Prometheus和DCGM

    来自:帮助中心

    查看更多 →

  • 创建Notebook实例

    rBoard可视化功能完成对训练输出的分析。 PFS是一种经过优化的高性能对象存储文件系统,存储成本,吞吐量大,能够快速处理高性能计算(HPC)工作负载。在需要使用对象存储服务场景下,推荐使用PFS挂载。 说明: 建议上传时按照128MB或者64MB打包或者切分,使用时边下载边

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • XGPU视图

    节点-XGPU设备显存分配量 字节 每个节点上的GPU虚拟化设备显存总量 GPU卡-XGPU设备显存使用率 百分比 每张GPU卡上的GPU虚拟化设备显存使用率 计算公式:显卡上所有XGPU设备的显存使用量之和 / 显卡显存总量 GPU卡-XGPU设备显存分配量 字节 每张GPU卡上的GPU虚拟化设备的显存总量

    来自:帮助中心

    查看更多 →

  • 基于GPU监控指标的工作负载弹性伸缩配置

    基于GPU监控指标的工作负载弹性伸缩配置 集群中包含GPU节点时,可通过GPU指标查看节点GPU资源的使用情况,例如GPU利用率显存使用量等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,在业务波动时自适应调整应用的副本数量。 前提条件 目标集群已创建,且

    来自:帮助中心

    查看更多 →

  • 异构资源配置

    异构资源配置 GPU配置 GPU虚拟化 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高

    来自:帮助中心

    查看更多 →

  • XGPU算力调度示例

    否开启算力隔离,GPU_CONTAINER_QUOTA_PERCENT为0的所有容器共享GPU的空闲算力。 混合调度策略不支持优先级容器。 权重弱调度(policy=6) 权重弱调度表示按照每个容器的算力比例为容器分配时间片,隔离性弱于权重抢占调度。XGPU服务会从算力单元1开

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • 方案概述

    创建一个对象存储服务 OBS桶,用于存储训练数据。 创建一个弹性文件服务 SFS Turbo,与OBS联动,用于给ModelArts提供共享文件存储服务。 方案优势 训练加速 高速组网架构,提升传输带宽;分布式高速缓存,快速访问数据;并行传输,提高文件读取速率。 资源利用率 存算分离

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 M

    来自:帮助中心

    查看更多 →

  • 基础指标:IEF指标

    千字节/秒(kB/s) GPU aom_node_gpu_memory_free_megabytes gpuMemCapacity 显存容量 该指标用于统计测量对象的显存容量。 ≥0 兆字节(MB) aom_node_gpu_memory_usage gpuMemUsage 显存使用率 该指

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了