GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu利用率低显存高 更多内容
  • 规格清单(x86)

    处理器E5 v4家族 基频/睿频:2.4GHz/3.3GHz IO 通用型SSD 超高IO 极速型SSD 实例网络性能与计算规格对应,规格越高网络性能越强 最大网络收发包:50万PPS 最大内网带宽:6Gbps 表2 X1型弹性 云服务器 的规格 vCPU 最大带宽/基准带宽 (Gbps) 最大收发包能力

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    训练好的模型可以通过调整阈值,影响机器人直接回答的准确率。阈值越高,机器人越严谨,对用户问的泛化能力越弱,识别准确率越高;阈值越,机器人越开放,对用户问的泛化能力越强,识别准确率越。 针对历史版本的模型,可以根据当前模型调节直接返回答案的阈值。 在“模型管理”页面,在模型列表的操作列单击“调整阈值”。

    来自:帮助中心

    查看更多 →

  • 集群指标及其维度

    兆字节(MB) 显存可用量(aom_cluster_gpu_memory_free_megabytes) 该指标用于统计测量对象的显存可用量。 >0 兆字节(MB) 显存使用率(aom_cluster_gpu_memory_usage) 该指标用于统计测量对象已使用的显存显存容量的百分比。

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 应用场景

    场景优势如下: 准确率:基于改进的深度学习算法,检测准确率。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率:基于改进的深度学习算法,检测准确率高。

    来自:帮助中心

    查看更多 →

  • 离线异步任务场景

    在触发调用后立即得到返回,从而不因长耗时处理阻塞业务主逻辑的执行。 实时感知任务状态 无 并行处理 离线GPU任务需要处理大量数据,对GPU资源供给要求,通过API调用并行运行加快处理速度。 数据源集成 离线GPU任务对数据源的需求多种多样,处理过程中需要与多种存储产品(例如 对象存储OBS )和多种消息产品(例如消息队列)进行频繁交互。

    来自:帮助中心

    查看更多 →

  • 查看训练作业资源占用情况

    实例的GPU/NPU的平均利用率低于50%时,在训练作业列表中会进行告警提示。 图2 作业列表显示作业资源利用率情况 此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NPU平均利用率计算方法:将作业worker-0实例的各个GPU/NPU加速卡每个时间点的利用率汇总取平均值。

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 高性能调度

    当前很多业务有波峰和波谷,部署服务时,为了保证服务的性能和稳定性,通常会按照波峰时需要的资源申请,但是波峰的时间可能很短,这样在非波峰时段就有资源浪费。另外,由于在线作业SLA要求较高,为了保证服务的性能和可靠性,通常会申请大量的冗余资源,因此,会导致资源利用率很低、浪费比较严重。将这

    来自:帮助中心

    查看更多 →

  • 人工智能性能优化

    就是一个相对GPU来说较多的内存申请。 显存优化策略 由于大模型的参数成倍数的增长,远超出了单GPU物理显存所能承载的范围,大模型训练必然需要进行显存优化。显存优化要么是优化算法本身,降低模型算法的显存消耗;要么是去扩大显存,通过一些置换方式获得“额外“空间,由于显存物理大小一定

    来自:帮助中心

    查看更多 →

  • 节点规格说明

    KVM s2.8xlarge.4 32 128 6/3 50 8 KVM 内存优化型 内存优化型 弹性云服务器 可应对大型内存数据集和网络场景。适用于内存要求,数据量大并且数据访问量大,同时要求快速的数据交换和处理。 表14 内存优化型实例特点 规格名称 计算 网络 支持集群类型 内存优化型M7

    来自:帮助中心

    查看更多 →

  • 监控弹性云服务器

    以便在HA发生(弹性 服务器 所在的物理机出现故障,系统自动迁移弹性云服务器至正常的物理机)时,及时获得通知。配置方法请参见一键告警。 相关链接 云监控服务功能总览 Windows云服务器带宽和CPU利用率问题排查方法 Linux云服务器带宽和CPU占用率问题排查方法 父主题:

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100%

    使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器

    来自:帮助中心

    查看更多 →

  • GPU虚拟化节点弹性伸缩配置

    在“GPU配置”中找到“节点池配置”,并选择新增的目标节点池。 参考准备GPU虚拟化资源,选择满足GPU虚拟化要求的驱动,并开启支持GPU虚拟化。 图1 异构资源配置 单击“确认配置”进行保存。 步骤三:创建GPU虚拟化负载并扩容 参考使用GPU虚拟化章节,创建使用GPU虚拟化

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了