GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu 加速时是超频吗 更多内容
  • 命名空间

    命名空间 命名空间(namespace)一种在多个用户之间划分资源的方法。适用于用户中存在多个团队或项目的情况。 当前云容器实例提供“通用计算型”和“GPU加速型”两种类型的资源,创建命名空间需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。 通用计算型:支持创建

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    色,这两种角色的Pod要配合起来完成整个作业,如果只是运行一种角色Pod,整个作业无法正常执行的,而默认调度器对于Pod调度逐个进行的,对于Kubeflow作业TFJob的Ps和Worker不感知的。在集群高负载(资源不足)的情况下,会出现多个作业各自分配到部分资源运行一部

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    用于轻量级Web 服务器 、开发、测试环境以及中低性能数据库等场景。 GPU加速型:提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等。仅支持1.11及以上版本集群添加GPU加速型节点。 高性能计

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架也可以使用框架自带的api进行查询。 父主题:

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    SSD 2 x 2*10GE GPU加速GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU

    来自:帮助中心

    查看更多 →

  • 什么是全球加速服务

    全球加速服务 组成部分 全球加速实例:全球加速实例一个运行的全球加速服务。使用全球加速服务前,需要先创建全球加速实例,选择加速区域,全球加速实例会为相应加速区域分配一个Anycast IP,客户端流量根据监听器配置通过Anycast IP就近从接入点接入华为云骨干网络,将客户端的访问请求分发至最佳终端节点。

    来自:帮助中心

    查看更多 →

  • 什么是云容器实例

    什么云容器实例 什么云容器实例 云容器实例(Cloud Container Instance,CCI)服务提供Serverless Container(无服务器容器)引擎,让您无需创建和管理服务器集群即可直接运行容器。 Serverless一种架构理念,指不用创建和管理服

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的弹性伸缩实践 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 调度概述

    NPU调度可以指定Pod申请NPU的数量,为工作负载提供NPU资源。 NPU调度 Volcano调度 Volcano一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性,提供了高性能任务调

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    工作负载弹性伸缩:即调度层弹性,主要是负责修改负载的调度容量变化。例如,HPA典型的调度层弹性组件,通过HPA可以调整应用的副本数,调整的副本数会改变当前负载占用的调度容量,从而实现调度层的伸缩。 节点弹性伸缩:即资源层弹性,主要是集群的容量规划不能满足集群调度容量,会通过弹出E CS 或CCI等资源的方式进行调

    来自:帮助中心

    查看更多 →

  • 如何配置Pod使用GPU节点的加速能力?

    如何配置Pod使用GPU节点的加速能力? 问题描述 我已经购买了GPU节点,但运行速度还是很慢,请问如何配置Pod使用GPU节点的加速能力。 解答 方案1: 建议您将集群中GPU节点的不可调度的污点去掉,以便GPU插件驱动能够正常安装,同时您需要安装高版本的GPU驱动。 如果您的集

    来自:帮助中心

    查看更多 →

  • GP Ant8裸金属服务器使用Megatron-Deepspeed训练GPT2并推理

    Megatron-LM一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于 自然语言处理 任务,如文本生成、 机器翻译 和对话系统等。 DeepSpeedNVIDIA开源的加速深度学习

    来自:帮助中心

    查看更多 →

  • 大数据分析

    业务高峰,得益于竞享实例低成本及快速扩缩容特性,竞享实例为系统提供可变容量以应对流量洪峰。自动化这项业务的关键,所以客户需要进行业务容错性改造,实现任何一个或一些实例出现故障(被回收),可自行替换并继续运行,无需任何人工干预。 实时数据分析 场景概述 实时数据分析指用适当

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 产品优势

    基因容器基于Kubernetes智能化基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小缩短至5小以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

  • VR云渲游平台与其他服务的关系

    指定云硬盘的大小。 单击了解更多云硬盘相关信息。 对象存储服务 OBS 对象存储服务(Object Storage Service, OBS)一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力,包括:创建、修改、删除桶,上传、下载、删除对象等。 在

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 、机器翻译编程实验

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了