深度学习 图形开发环境 更多内容
  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 环境准备

    环境准备 迁移环境简介 ModelArts开发环境针对推理昇腾迁移的场景提供了云上可以直接访问的开发环境,具有如下优点: 利用云服务的资源使用便利性,可以直接使用到不同规格的昇腾设备。 通过指定对应的运行镜像,可以直接使用预置的、在迁移过程中所需的工具集,且已经适配到最新的版本可以直接使用。

    来自:帮助中心

    查看更多 →

  • 图形化开发插件

    图形化开发插件 当前在华为物联网平台上,使用图形化开发的编解码插件只适用于上报数据格式为二进制的设备。 在设备接入控制台,我们可以通过可视化的方式快速开发一款产品的编解码插件。 本节首先以一个NB-IoT烟感设备的例子讲解如何开发一个支持数据上报和命令下发的编解码插件,并且支持上

    来自:帮助中心

    查看更多 →

  • 获取图形验证码

    获取图形验证码 功能介绍 获取图形验证码。 URI GET /api/v2/sdk/captcha 请求参数 表1 请求Header参数 参数 是否必选 参数类型 描述 X-operating-sys-version 是 String 调用方操作系统版本,例如:Android 10。

    来自:帮助中心

    查看更多 →

  • 校验图形验证码

    校验图形验证码 功能介绍 校验图形验证码。 URI POST /api/v2/sdk/captcha/verify 请求参数 表1 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 是 String 该字段内容填为“application/json;charset=utf8”。

    来自:帮助中心

    查看更多 →

  • 产品功能

    基因容器(GeneContainer Service,G CS )提供云端基因解决方案,支持DNA、RNA等主流生物基因测序场景。基因容器基于轻量级容器技术,结合大数据、深度学习算法,优化官方标准算法,为您提供灵活可定制的测序流程、秒级可伸缩的高可靠资源。 基因容器作为基因测序端到端完整解决方案,为您提供数据管理

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    SDK前,需下载OBS SDK包,然后在本地开发环境中安装使用。 详细指导 :《OBS SDK参考》 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 功能介绍

    持JavaScript和Python脚本语言,提供线上开发和线下SDK两种方式,用户可使用自己熟悉的开发环境。 图5 北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。

    来自:帮助中心

    查看更多 →

  • 开发环境准备

    开发环境准备 请根据自身业务选择Go(推荐)或其他语言的开发环境。 Go开发环境准备: 安装Go开发环境。安装包下载地址为:https://golang.org/dl/ 。(请选择1.9.2之后的版本) 各个系统对应的包名(以1.14版本为例) 操作系统 包名 Windows go1

    来自:帮助中心

    查看更多 →

  • 创建开发环境

    创建开发环境 用户在使用JupyterLab开发环境时,需要创建开发环境。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据处理”。 在“任务管理”界面,单击“开发环境”。 在“环境信息”界面,单击“创建”。 在“新建环境”界面,配置参数。 作业位置:选择作业存放位置。

    来自:帮助中心

    查看更多 →

  • 搭建开发环境

    在Linux上完成编译后,通过Windows访问Linux主机上的文件,完成系统镜像文件的烧录调测与运行。所以开发环境包括Linux下的编译环境,以及Windows下的烧录调测工具和USB转串口驱动。在Linux下搭建编译环境。参考搭建Linux编译环境。参考搭建Linux编译环境。在Linux下搭建samba服务,实现Windows下对

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了