AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 设定 特征 更多内容
  • 分页查询智能任务列表

    5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图

    来自:帮助中心

    查看更多 →

  • 大数据分析

    能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 应用进程控制概述

    应用进程控制使用流程说明 操作项 描述 创建白名单策略 白名单策略是管理HSS学习 服务器 行为和应用进程防护动作的规则,只有关联了白名单策略的服务器才能开启应用进程防护。 确认学习结果 HSS学习完服务器中的应用进程后,可能存在某些可疑应用进程的特征不明显,HSS无法完全定义为恶意进程或可信进程,因此这些

    来自:帮助中心

    查看更多 →

  • 特征工程和算法工程的关系?

    特征工程和算法工程的关系? 用户创建特征工程的时候,进入特征工程,可以看到系统自动创建的与特征工程同名的算法工程。支持在同一个特征工程中创建多个算法工程,操作如下所示: 在JupyterLab环境编辑界面,单击界面左上角的“File > New Launcher”,界面右侧新增“

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 训练型横向联邦作业流程

    训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。

    来自:帮助中心

    查看更多 →

  • 关闭应用进程控制防护

    单击“确认”。 在策略列表中,查看目标策略。 关闭防护,但保留HSS学习到的服务器应用进程特征。 查看目标策略的策略状态为“学习完成,未生效”,表示关闭应用进程防护成功。 关闭防护,并删除HSS学习到的服务器应用进程特征。 目标策略已从策略列表中删除,表示关闭应用进程防护成功。 关闭单台服务器防护

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业管理

    可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 方案概述

    以上下游质量管理作为核心产品,实现从产品质量策划到质量执行反馈的全生命周期供应链互联,真正解决信息孤岛和企业质量管理的需求,同时结合华为大数据、深度学习、大模型等技术深度挖掘企业质量管理潜能,形成端到端的智能决策和快速响应。 解决方案实践的应用行业推荐: 服务于制造业,主要目标行业为智能汽车与新能

    来自:帮助中心

    查看更多 →

  • 数据准备

    乳腺癌数据集从UCI获取,该数据集只包含连续类型特征,因此对所有特征使用Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率

    来自:帮助中心

    查看更多 →

  • 最新动态

    接口。 公测 / 2018年6月 序号 功能名称 功能描述 阶段 相关文档 1 图像搜索 服务正式公测上线 基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助客户从指定图库中搜索相同或相似的图片。 公测 产品介绍

    来自:帮助中心

    查看更多 →

  • 身份认证与访问控制

    受到这些访问规则的保护。 安全组介绍 Web应用防火墙 华为云Web应用防火墙WAF对网站业务流量进行多维度监测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,全面避免网站被黑客恶意攻击和入侵。 WAF介绍 父主题: 安全

    来自:帮助中心

    查看更多 →

  • 安全服务

    Web应用防火墙 Web应用防火墙(Web Application Firewall,WAF)对网站业务流量进行多维度检测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,阻挡诸如 SQL注入或跨站脚本等常见攻击,避免这些攻击影响Web应用程序的可用性、安全性或消耗过度的资源,降低数据被篡改、失窃的风险。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    快速完成模型开发和训练 AutoML自动完成特征选择、超参选择及算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索及云端编码及调试 联邦学习&重训练,保障模型应用效果 支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果

    来自:帮助中心

    查看更多 →

  • 分析ModelArts数据集中的数据特征

    由于发布后的数据集不会默认启动数据特征分析,针对数据集的各个版本,需手动启动特征分析任务。在数据特征页签下,单击“启动特征分析”。 在弹出的对话框中配置需要进行特征分析的数据集版本,然后单击“确定”启动分析。 “版本选择”,即选择当前数据集的已发布版本。 图1 启动数据特征分析任务 数据特征分析任务启动

    来自:帮助中心

    查看更多 →

  • 设备导入License后,特征库无法升级

    设备导入License后,特征库无法升级 问题描述 设备导入License后,需要将AV和IPS特征库升级到最新版本,进入“系统 > 升级中心”,单击“立即升级”执行特征库升级,提示“升级服务器 域名 解析失败,请检查配置或网络”,特征库升级失败。 可能的原因 设备不能连接公网,无法连接到升级中心。

    来自:帮助中心

    查看更多 →

  • 设备导入License后,特征库无法升级

    设备导入License后,特征库无法升级 问题描述 设备导入License后,需要将AV和IPS特征库升级到最新版本,进入“系统 > 升级中心”,单击“立即升级”执行特征库升级,提示“升级服务器域名解析失败,请检查配置或网络”,特征库升级失败。 可能的原因 设备不能连接公网,无法连接到升级中心。

    来自:帮助中心

    查看更多 →

  • JupyterLab开发平台

    JupyterLab开发平台 创建特征工程 数据处理 模型训练 迁移学习 学件 模型归档 如何恢复异常的JupyterLab环境 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦分箱和IV计算作业

    of DatasetFeatureEntity objects 数据集特征列 label 是 String 标签列,最大值1000 featuresList 是 Map<String,Array<String>> 特征信息 instance_id 否 String 实例id,最大32位,由字母和数字组成

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了