深度学习 模型在线训练并部署 更多内容
  • 大模型开发基本流程介绍

    超参数调优:选择合适的学习率、批次大小等超参数,确保模型训练过程中能够快速收敛取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与

    来自:帮助中心

    查看更多 →

  • 部署声音分类服务

    系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。

    来自:帮助中心

    查看更多 →

  • 方案概述

    测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权Func

    来自:帮助中心

    查看更多 →

  • 方案概述

    据处理调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台ModelArts可以快速创建和训练机器学习

    来自:帮助中心

    查看更多 →

  • 模型训练

    是否使用增量学习 训练时是否使用增量学习,默认关闭。 是否进行集成学习 训练时是否进行集成学习,默认开启。开启后训练结果增加模型集成节点,训练结果中生成两个stacking类型的模型包。 单击图标,运行AutoML代码框内容。运行结果如图5所示。 AutoML模型训练过程中,会展

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练新建模型训练工程的时候,选择通用算法有什么作用? 使用训练模型进行在线推理的推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库的版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”,弹出“训练配置”对话框,如图1所示。 图1 训练任务配置 在“训练配置”对话框中配置参数,如表1所示。 表1 训练配置参数配置 区域 参数名称 参数描述 任务说明

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练 如果您缺少自有模型训练平台,可以基于ModelArts进行模型在线训练。 根据场景选择适用的摄像机。 在首页导航栏,进入“选择摄像机型号”页面。 通过不同的条件筛选摄像机,单击选择需要的摄像机(如X2221-VI),摄像机的相关信息将显示在右侧的摄像机详情窗口

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型

    来自:帮助中心

    查看更多 →

  • 训练模型

    同,尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题:

    来自:帮助中心

    查看更多 →

  • 部署文本分类服务

    系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。

    来自:帮助中心

    查看更多 →

  • 部署图像分类服务

    系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    使用用户自己的算法,训练得到手写数字识别模型部署后进行预测。 从0制作 自定义镜像 并用于训练(PyTorch+CPU/GPU) PyTorch 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    前需要查询ModelArts服务AK/SK确保关联AK/SK到ModelArts服务,然后通过查询ModelArts计算节点规格获取spec_id返回的值。 run_path 是 String 训练结果保存根路径,训练完成后,会将模型和日志文件保存在该路径下。不包含中文的文件夹。

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • NLP大模型训练流程与选择建议

    若项目中数据量有限或任务场景较为广泛,可以选择LoRA微调以快速部署保持较高适用性。 若拥有充足数据且关注特定任务效果,选择全量微调有助于大幅提升在特定任务上的模型精度。 当前平台提供的NLP大模型训练方式仅支持微调,不支持预训练。 父主题: 训练NLP大模型

    来自:帮助中心

    查看更多 →

  • 部署物体检测服务

    系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了