AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 泛化 更多内容
  • Standard自动学习

    提供“自动学习白盒”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    提供高性能、高可靠性、高性价比的基因测序计算、存储、分析和AI能力支持,让科研过程标准、可执行。 药物研发 提供多个药物研发AI模型、AI算法、药物 知识图谱 ,支撑药企高效地开展药物研发工作。 医疗智能体 深度学习算法及药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。

    来自:帮助中心

    查看更多 →

  • 5G消息 Message over 5G

    应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 步骤2:准备应用运行环境 步骤2:准备应用运行环境 更多 访问外网 应用容器改造介绍 应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 更多 常见问题 了解更多常见问题、案例和解决方案 高频常见问题

    来自:帮助中心

    查看更多 →

  • 产品优势

    探索及云端编码及调试 联邦学习&重训练,保障模型应用效果 支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型能力 模型自动重训练,持续优化模型效果,解决老化劣问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构数据的模型自动训练应用,能够对结构数据进行分类或者数据预测。可用于用户画像分析,实现精确营销。也可应用于制造设备预测性维护,根据设备实时数据的分析,进行故障识别。

    来自:帮助中心

    查看更多 →

  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一、数值、标准、特征离散、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的图标中的“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • 应用场景

    反馈,同时结合用户的长期兴趣和短期兴趣进行个性推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中率高,用户粘性增强,PV增幅明显。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    样本增强(随机翻转、裁切、对比度亮度增强、归一等)、loss函数、优化器等参数,并支持用户自定义更多超参数,提升无代码模型开发效率。 图13 网络结构及模型参数配置 图14 网络结构及模型参数配置2 模型训练 模型训练多维度可视监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。

    来自:帮助中心

    查看更多 →

  • 产品优势

    实现多个参与方数据流的自动编排和融合计算。 自主高效 数据使用全流程可视展示,为数据参与方提供可感知、可监测的数据使用过程; 支持数据参与方、计算方的多种部署模式,包括云上(同Region、跨Region)、边缘节点、H CS O的部署模式; 采用容器资源/部署管理,支持调度方、数据参与方、计算方的弹性扩缩容。

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    Programming Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问和调用API获取推理结果,帮助用户自动采集关键数据,打造智能业务系统,提升业务效率。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    加数据,训练效果并不明显。 降低正则约束。 正则约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则参数λ或者直接去除正则项。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 方案概述

    分析服务。 决策风险高:研判错误可能导致管制失效。 通过本方案实现的业务效果 打破数据孤岛:借力机器学习深度学习核心算法模型,打破区级各部门数据壁垒,可实现中台、标准、自动的数据汇聚、存取、质控,推进一网统管、一网通享、一网通办能力。 构建多场景应用:基于核心算法赋能感知

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 产品功能

    对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、HCSO多种部署模式。 可视数据监管 为数据参与方提供可视的数据使用

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 基因容器基于Kubernetes智能基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了