网络货运平台解决方案

整合配置运输资源,帮助企业构建专业物流服务能力和精细化运营体系

 
 
专业咨询服务 ∙ 助您上云无忧
专属顾问会在1个工作日内联系您
 请填写联系人
 请填写真实电话
提交

    基于深度学习车道轨迹检测 更多内容
  • 车道线检测

    车道线检测 Octopus 目录 标注文件目录结构 +--- 1628568066600 | +--- 1628568066600.jpg | +--- 1628568066600.json +--- 1628654064999 | +--- 1628654064999

    来自:帮助中心

    查看更多 →

  • 车道保持(Lane Keeping)检测

    车道保持(Lane Keeping)检测 车道保持检测的目的是判断主车在行驶过程中能否很好地沿车道中心线行驶。 车道保持检测分为两个指标: 偏移车道中心线距离检测 偏移车道中心线横摆角检测 偏移车道中心线距离检测是指主车的质心相对于车道中心线的垂直距离,当该偏移距离大于某一阈值时(本设计取0

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 3D预标注车道线检测

    3D预标注车道线检测 创建3D预标注车道线检测任务 输入输出文件格式要求 父主题: 智驾模型服务

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 事件轨迹

    事件轨迹 本章节介绍在事件网格控制台如何追踪事件轨迹。 您可以通过事件轨迹功能,追踪查询72小时内的事件源、事件详情、投递目标及投递状态等相关信息。 事件轨迹当前支持局点:上海一、上海二、北京四、华北-乌兰察布一、华南-广州。 操作步骤 登录事件网格控制台。 在左侧导航栏选择“事件通道”,进入“事件通道”页面。

    来自:帮助中心

    查看更多 →

  • 创建3D预标注车道线检测任务

    输入路径:选择OBS输入路径。车道线检测输入文件必须满足车道线检测输入输出文件格式要求。 输出路径:选择OBS输出路径。车道线检测输出文件必须满足车道线检测输入输出文件格式要求。 单击“确认”,完成3D预标注车道线检测的创建。 3D预标注车道线检测相关操作 3D预标注车道线检测还可以进行以下操作。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 产品优势

    JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支持安全多方计算,如基于隐私集合求交PSI(Private Set Intersection)技术的多方样本对齐、 基于差分隐私、加法同态、秘密共享等技术的训练模型保护; 可插件化的对接 区块链 存储,实现多方数据的流动轨迹、使用过程的全程可追溯、可审计。

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张图像识别速度小于0.1秒。 内容审核-文本 内容审核 -文本有以下应用场景: 电商评论筛查 审核电商网站产品评论,智能识别有色情、灌水等违规评论,保证良好用户体验。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。

    来自:帮助中心

    查看更多 →

  • 事件轨迹详情

    事件轨迹详情 功能介绍 事件轨迹详情,展示事件源到投递目标的投递情况。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/ev

    来自:帮助中心

    查看更多 →

  • 查看流程轨迹

    人接入码对流程进行追踪定位。 选择“流程管理 > 流程轨迹”。 输入主叫号码,设置跟踪时间段,选择接入码。 参见测试机器人重新测试。 回到流程轨迹页面,单击“搜索”,单击查询出来的记录。 单击流程图上的出错节点,查看日志信息和错误信息。 您可单击“当前节点信息”后的“>>”,查看完整信息。

    来自:帮助中心

    查看更多 →

  • 配置流程轨迹

    配置流程轨迹 流程轨迹属于公共模块,内容可参考智能机器人查看流程轨迹章节。 父主题: 操作员:配置普通IVR

    来自:帮助中心

    查看更多 →

  • 查询消息轨迹

    查询消息轨迹 功能介绍 查询消息轨迹。 调用方法 请参见如何调用API。 URI GET /v2/{engine}/{project_id}/instances/{instance_id}/trace 表1 路径参数 参数 是否必选 参数类型 描述 engine 是 String

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供图文视频内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测,以及检测图像清晰度和构图质量等功能。 稳定可靠 内容审核服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 轨迹数据信息(tracks)

    否 Integer 参数说明:车辆所处车道。如果感知设备支持覆盖双向行驶方向时,桩号递增行驶方向,车道号从左到右从1依次递增;桩号递减行驶方向,车道号从左到右从-1依次递减。如果感知设备只支持覆盖单向车道,可以不区分桩号递增或者递减行驶方向,车道号可以按照车辆行驶方向从左到右,从1开始递增。

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 获取轨迹统计

    获取轨迹统计 功能介绍 获取轨迹统计 URI GET /v1.0/{project_id}/data/mileage-statistics 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目id,获取方法请参见获取项目ID 表2 Query参数

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检测,准确识别图像中包含的影视明星、网红人物等。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了