内容审核-文本

内容审核-文本

内容审核-文本 Moderation (Text),基于华为自研的深度学习和内容审核模型,可自动识别出文本中出现的涉黄、广告、辱骂、灌水等内容,帮助客户降低业务违规风险,净化网络环境,提升用户体验

商用服务费用低至¥0.16/千次

自动识别出文本中出现的涉黄、广告、辱骂、灌水等内容

    深度学习 车道检测 更多内容
  • 车道线检测

    车道线检测 Octopus 目录 标注文件目录结构 +--- 1628568066600 | +--- 1628568066600.jpg | +--- 1628568066600.json +--- 1628654064999 | +--- 1628654064999

    来自:帮助中心

    查看更多 →

  • 车道保持(Lane Keeping)检测

    车道保持(Lane Keeping)检测 车道保持检测的目的是判断主车在行驶过程中能否很好地沿车道中心线行驶。 车道保持检测分为两个指标: 偏移车道中心线距离检测 偏移车道中心线横摆角检测 偏移车道中心线距离检测是指主车的质心相对于车道中心线的垂直距离,当该偏移距离大于某一阈值时(本设计取0

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 3D预标注车道线检测

    3D预标注车道线检测 创建3D预标注车道线检测任务 输入输出文件格式要求 父主题: 智驾模型服务

    来自:帮助中心

    查看更多 →

  • 创建3D预标注车道线检测任务

    输入路径:选择OBS输入路径。车道线检测输入文件必须满足车道线检测输入输出文件格式要求。 输出路径:选择OBS输出路径。车道线检测输出文件必须满足车道线检测输入输出文件格式要求。 单击“确认”,完成3D预标注车道线检测的创建。 3D预标注车道线检测相关操作 3D预标注车道线检测还可以进行以下操作。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现口罩检测

    建自动学习物体检测项目后数据标注节点会报错。 图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。 进入“创建物体检测”页面后,填写相关参数。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现物体检测

    使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张图像识别速度小于0

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 车道线图片标注任务

    车道线图片标注任务 车道线图片标注任务是指依据标注规范对真实路采图片中出现的道路中的车道线、斑马线等交通线路进行标注,一般区分实线、虚线,按需求增加颜色、遮挡程度等额外属性。 图1 车道线图片标注任务 绘制对象 单击车道线标注任务,选择一张图片进入人工标注。 绘制对象。 单击左侧

    来自:帮助中心

    查看更多 →

  • 2D预标注

    2D预标注 2D预标注当前支持目标检测车道线检测和语义分割(混合)多种预标注功能。其中,目标检测主要用于鱼眼图片的预标注;语义分割(混合)不仅支持鱼眼图片,还支持普通图片的预标注;车道线检测能够快速标注车道线的位置和类别。 2D预标注默认使用服务内置的初始模型部署的在线服务,您

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供文本、图像、音频、视频等内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测。 稳定可靠 内容审核 服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 机非人参数

    的多边形。 满屏绘制:选择“满屏绘制”。 车道线绘制 车道线不能交叉。 车道右边线、车道线1:可以修改,不能删除。 车道线2、车道线3:可以修改、删除。 检测目标 检测目标有“目标整体”、“非机动车”和“机动车”。勾选检测目标后,当检测区域内识别出该目标时,对目标进行抓拍。 发送车辆属性

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了