超分辨率 数据集 深度学习6 更多内容
  • 如何判断源视频应转码成标清、高清或超清?

    如何判断源视频应转码成标清、高清或清? 如果低分辨率视频转码成高分辨率视频,观看体验会和源视频效果差不多。因此建议选择与源视频分辨率相近的模板进行转码。 清:1080*1920 高清:720*1280 标清:480*854/480*720 流畅:270*480/270*406

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    选择“LLM”。 训练类型 选择“自监督训练”。 训练模型 选择训练所需要的模型,模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的参数。 训练参数说明和调参策略请参见自监督微调训练参数说明。 checkpoints 模型训练任务过程中,checkpoints用于保存模型

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。 两个过程可以相互转换。如开发阶段代码稳定后,则会进入实验阶段,通过不断尝试调整参来迭代模型;或在

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    output_dir String 样本输出路径,格式:数据集输出路径+数据集名称+“-”+数据集ID+“/annotation/auto-deploy/”。例如:“/test/work_1608083108676/dataset123-g6IO9qSu6hoxwCAirfm/annotation/auto-deploy/”。

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    基础场景(文本分析、文本生成、文本翻译、query生成、开放问答、知识问答、改写、总结聚合、聊天) 数据批量大小 8 训练轮数 6 学习率 0.000003 模型保存步数 1000 优化器 adamw 学习率衰减比率 0.01 热身比例 0.05 有监督微调(局部微调)训练参数说明 表5 有监督微调(局部微调)参数说明

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    行业 适用领域 通用 配置部署模型参数,参数说明如表6所示。 表6 微调的模型部署参数说明 参数名称 参数说明 实例个数 设置模型服务部署的实例个数。 不同的模型部署1个实例需要的推理单元个数不同,比如,ChatGLM3-6B需要2个实例。 不同的模型因为模型参数量不同,模型参

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    持将模型下载至本地、生成SHA256校验码、上架至NAIE服务官网、发布成在线推理服务,进行在线推理、创建联邦学习实例、删除模型。 模型验证 模型验证是基于新的数据集参,对模型训练服务已打包的模型进行验证,根据验证报告判断当前模型的优劣。 云端推理框架 提供模型云端运行框架环

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    别准确率越低。 针对历史版本的模型,可以根据当前模型调节直接返回答案的阈值。 在“模型管理”页面,在模型列表的操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适的阈值,然后单击“确定”。 用户问法与标准问的相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    : [ { "sample_id" : "0a0939d6d3c48a3d2a2619245943ac21", "worker_id" : "8c15ad080d3eabad14037b4eb00d6a6f", "labels" : [ { "name"

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    "018713527a1d49638eb27b305bc0cc8c.breast_hetero_mini_host.space_creator,0573513cac934b6aab79856c355ee7a2.ief_breast_hetero_mini_guest.space_creator", "work_step"

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明

    来自:帮助中心

    查看更多 →

  • HLS加密视频播放模糊不清?

    3840*2160 5600 8000 2K 2560*1440 4900 7000 清 1920*1080 2100 3000 高清 1280*720 700 1000 标清 854*480 500 600 流畅 480*270 200 300 父主题: 播放问题

    来自:帮助中心

    查看更多 →

  • 智能文档解析

    政务:身份证、结婚证、居住证、各类企业资质证照。 医疗:化验单、报告单、药品说明书等。 物流海关:报关单、货运单、配送单等。 其他:成绩单、商小票、支付凭证、账单等。 优势 简单智能 无需训练直接调用,自动输出结构化信息,简单高效。 多版式 不受版式数量影响,支持多版式卡证、票据,适用场景广泛。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    字符,仅支持字母或下划线开头。 数据配置 数据集 在下拉列表中选择“我创建的”或“我收藏的”数据集数据集版本 在下拉列表中选择数据集版本。 训练数据比例 训练数据比例是指用于训练模型的数据集与测试数据集的比例。通常情况下,会将数据集分成训练集和测试集两部分,其中训练集用于训练模型,测试集用于评估模型的性能。

    来自:帮助中心

    查看更多 →

  • 直播推流应该如何设置分辨率和码率?

    标清(480P) 854*480 600Kbps 420Kbps 高清(720P) 1280*720 1000Kbps 700Kbps 清(1080P) 1920*1080 2000Kbps 1400Kbps 2K 2560*1440 7000Kbps 4900Kbps 4K 3840*2160

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    "job_instance_id" : "7b0df147d6464ef2877b22f6d964d274" } 状态码 状态码 描述 200 执行纵向联邦模型训练作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 时序预测

    容。 这里会结合前面的算子“预测场景需求”、“特征画像”和“可预测性评估”的运行结果,综合评估推荐出最适合的预测算法,并利用参优化,对推荐出的模型进行参寻优。 单击“算法选择”左侧的图标,完成算法选择。 代码运行过程中,下方会不断的打印运行日志。代码运行完成后,可以看到“算法推荐”信息。

    来自:帮助中心

    查看更多 →

  • 批量更新样本标签

    1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    5-14b https://huggingface.co/Qwen/Qwen1.5-14B-Chat Yi yi-6b https://huggingface.co/01-ai/Yi-6B-Chat yi-34b https://huggingface.co/01-ai/Yi-34B-Chat

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了