部署深度学习模型 更多内容
  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 将模型部署为实时推理作业

    模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    快速、方便地部署、使用和管理当前最流行的机器学习软件。 目前Kubeflow 1.0版本已经发布,包含开发、构建、训练、部署四个环节,可全面支持企业用户的机器学习深度学习完整使用过程。 如下图所示: 通过Kubeflow 1.0,用户可以使用Jupyter开发模型,然后使用fa

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • 方案概述

    E CS )上快速搭建DeepSeek-R1蒸馏版模型。 图1 方案架构图 该解决方案将会部署如下资源: 创建一个弹性公网IP EIP,用于提供访问公网和被公网访问能力。 创建一台Flexus 云服务器 X实例( 弹性云服务器 ECS),用于搭建DeepSeek-R1蒸馏版模型。 创建一个安全组,通过配置安全组规则,为云 服务器 提供安全防护。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    ,鼓励模型保持较小的权重,防止过拟合或模型过于复杂,取值需≥0。 学习学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 学习率调整策略 用于选择学习率调度器的类型。学习率调度

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: Standard自动学习

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 功能介绍

    北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的新模型部署模型 模型部署是通过为基座模型(即原模型)和微调后的新模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分析结

    来自:帮助中心

    查看更多 →

  • 使用大模型在ModelArts Standard创建模型部署在线服务

    Standard创建模型。 当用户使用自定义引擎时,默认开启动态加载,模型包与镜像分离,在服务部署时动态将模型加载到服务负载。 配置健康检查 大模型场景下导入的模型,要求配置健康检查,避免在部署时服务显示已启动但实际不可用。 图3 采用自定义引擎,开启动态加载并配置健康检查示例图 部署在线服务

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习模型训练的框架,如Tensorflow、Spark MLlib、M

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 产品优势

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了