比较小的深度学习模型 更多内容
  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中清晰人脸上传至您后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔客流信息。 车牌识别技能 面向智慧商超车牌识别技能。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    一句话识别 可以实现1分钟以内音频到文字转换。对于用户上传二进制音频格式数据,系统经过处理,生成语音对应文字,支持语言包含中文普通话、方言以及英语。方言当前支持四川话、粤语和上海话。 产品优势 高识别率 基于深度学习技术,对特定领域场景 语音识别 进行优化,识别率达到业界领先。

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    盘古自然语言大模型适用场景有哪些 自然语言处理 模型是一种参数量极大预训练模型,是众多自然语言处理下游任务基础模型。学术界和工业界实践证明,随着模型参数规模增加,自然语言处理下游任务效果显著提升,这得益于海量数据、大量算力以及深度学习飞跃发展。 基于自然语言处理大模型的预训

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    ython语言ModelArts SDK接口。 详细指导文档:《ModelArts SDK参考》 OBS SDK OBS服务提供SDK,对OBS进行操作。由于ModelArts较多功能需使用OBS中存储数据,用户可使用OBS SDK进行调用,使用OBS存储您数据。 OBS

    来自:帮助中心

    查看更多 →

  • 查看训练任务详情与训练指标

    一般来说,一个正常的Loss曲线是单调递减,即随着训练进行,Loss值不断减小,直到收敛到一个较小值。以下给出了几种正常Loss曲线形式: 图2 正常Loss曲线:平滑下降 图3 正常Loss曲线:阶梯下降 如果您发现Loss曲线出现了以下几种情况,可能意味着模型训练状态不正常: Loss曲线上升:L

    来自:帮助中心

    查看更多 →

  • 源端磁盘过大,是否可以迁移到磁盘较小的服务器?

    源端磁盘过大,是否可以迁移到磁盘较小 服务器 ? 迁移Windows服务器 Windows 源端磁盘过大,系统分区和启动分区总和大于1 TB时,无法迁移。 Windows 源端磁盘大小超过1 TB,系统分区和启动分区总和小于1 TB时,可以通过修改配置文件把源端磁盘迁移到较小目的端磁盘上。 例如:源端系统盘1

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 更新MaaS模型服务的模型权重

    参考创建我模型,用待更新模型权重文件新建一个我模型。关键参数请参见表1。 表1 创建模型关键参数说明 参数 说明 来源模型 选择和待升级模型服务“部署模型”同一个模型框架。 权重设置与词表 选择“自定义权重”。 选择自定义权重路径 选择存放待更新模型权重文件OBS路径,必须选择到模型文件夹。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    out of memory 解决方法: 将yaml文件中per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速工具或增加zero等级,可参考各个模型深度学习训练加速框架选择,如原使用Accelerator可替换为Deep

    来自:帮助中心

    查看更多 →

  • 基本概念

    多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应不同输出之间一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入惩罚项,旨在减少重复生成可能性。通过在计算损失函数(用于优化模型指标)时增加

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    中所占比例。 验证集比例对于机器学习模型性能评估非常重要。如果验证集比例过小,可能导致模型在验证集上表现不够稳定,无法准确评估模型性能。如果验证集比例过大,可能会导致训练集样本量不足,影响模型训练效果。因此,在选择验证集比例时,需要根据具体情况进行调整,以保证模型的性能评估和训练效果的准确性。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 应用场景

    买了又买等推荐场景,但各个子场景运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    从上面两张表可以看出: (1)训练轮数对于联邦学习模型性能影响不大,这主要是由于乳腺癌数据集分类相对简单,且数据集经过了扩充导致; (2)增大每个参与方本地模型训练迭代次数,可以显著提升最终联邦学习模型性能。 参与方数据量不同时,独立训练对比横向联邦训练准确率 本节实验不再将训练集均

    来自:帮助中心

    查看更多 →

  • 模型的基础信息

    模型基础信息 盘古大模型平台为用户提供了多种规格模型,涵盖从基模型到功能模型多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持模型清单,您可以根据实际需求选择最合适模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式、信任边界缺失多个参与方之间建立互信空间; 实现跨组织、跨行业多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)联邦计算;

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了