基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    pytorch深度学习框架配置 更多内容
  • 高性能调度

    ata和AI场景下,通用、可扩展、高性能、稳定的原生批量计算平台,方便AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等能力。 应用场景1:多类型作业混合部署 随着各行各业的发展,涌现出越来越多的领域框架来支持业务

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    5&SDXL Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.908) SD WEBUI套件适配PyTorch NPU的推理指导(6.3.908) SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    元模型和容器镜像中的元模型,可对所有迭代和调试的模型进行统一管理。 约束与限制 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 创建模型、管理模型版本等功能目前是免费开放给所有用户,使用此功能不会产生费用。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架 是,选用ZeRO (Zero Redundancy Optimizer)优化器 ZeRO-0,配置以下参数 deepspeed: examples/deepspeed/ds_z0_config

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 基因容器基于Kubernetes智能化基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RD

    来自:帮助中心

    查看更多 →

  • 执行框架转换

    执行框架转换 应用场景 针对企业中使用Dubbo等其他API框架的存量服务,AstroPro支持将代码统一转换为Spring MVC + OpenAPI的主流框架。转换后的框架将统一化,这有助于简化技术栈,降低技术多样性带来的复杂性,同时提高开发和运维团队的效率。 框架转换为Astro

    来自:帮助中心

    查看更多 →

  • 搭建ThinkPHP框架

    搭建ThinkPHP框架 简介 ThinkPHP遵循Apache2开源许可协议发布,是一个免费、开源、快速、简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应用开发和简化企业应用开发而诞生。本文介绍如何在华为云上使用CentOS 7.2操作系统的实例搭建ThinkPHP框架。 前提条件

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    提供多个药物研发AI模型、AI算法、药物 知识图谱 ,支撑药企高效地开展药物研发工作。 医疗智能体 深度学习算法及药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。 产品优势 提供开放的、易于扩展的平台架构。 提供端到端的AI赋能平台加速AI的研发和应用。 提供针对医疗行业的AI自动建模工具。

    来自:帮助中心

    查看更多 →

  • ModelArts统一镜像列表

    Notebook、训练、推理部署 表2 PyTorch 预置镜像 适配芯片 适用范围 pytorch_2.1.0-cann_8.0.rc1-py_3.9-euler_2.10.7-aarch64-snt9b Ascend snt9b Notebook、训练、推理部署 pytorch_1.11.0-cann_8

    来自:帮助中心

    查看更多 →

  • 创建算法

    设置算法启动方式(预置框架) 图1 使用预置框架创建算法 需根据实际算法代码情况设置“代码目录”和“启动文件”。选择的预置框架和编写算法代码时选择的框架必须一致。例如编写算法代码使用的是TensorFlow,则在创建算法时也要选择TensorFlow。 表1 使用预置框架创建算法 参数 说明

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数 deepspeed:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了