GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    CPU gpu深度学习 更多内容
  • 创建并管理工作空间

    默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数 默认无限制,支持设置1~10000。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • Volcano调度器

    name: 'cce-gpu' cce-gpu 结合CCE的GPU插件支持GPU资源分配,支持小数GPU配置。 说明: 1.10.5及以上版本的插件不再支持该插件,请使用xgpu插件。 小数GPU配置的前提条件为CCE集群GPU节点为共享模式,检查集群是否关闭GPU共享,请参见修改C

    来自:帮助中心

    查看更多 →

  • 装箱调度(Binpack)

    度节点的得分信息如下: CPU.weight * (request + used) / allocatable 即CPU权重值越高,得分越高,节点资源使用量越满,得分越高。Memory、GPU等资源原理类似。其中: CPU.weight为用户设置的CPU权重 request为当前Pod请求的CPU资源量

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型E CS GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • Workspace支持的CES操作系统监控指标(安装Agent)

    云桌面 1分钟 gpu_usage_gpu (Agent) GPU使用率 该指标用于统计测量对象当前的GPU使用率。 单位:百分比 采集方式(Linux):通过调用GPU卡的libnvidia-ml.so.1库文件获取。 采集方式(Windows):通过调用GPU卡的nvml.dll库获取。

    来自:帮助中心

    查看更多 →

  • 支持的监控指标

    云手机 服务器 1分钟 gpu_usage_temperature GPU温度 该指标用于统计测量对象当前的GPU温度。 > 0 ℃ 云手机服务器 1分钟 gpu_usage_status GPU状态 该指标用于统计测量对象当前的GPU状态。 - 云手机服务器 1分钟 gpu_mem_busy_percent

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    FS和OBS云服务 示例:从 0 到 1 制作 自定义镜像 并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts Standard平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPUGPU。 面向熟悉

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 UCS On Premises GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • CPU Burst弹性限流

    间。其原理是业务在每个CPU调度周期内使用的CPU配额有剩余时,系统对这些CPU配额进行累计,在后续的调度周期内如果需要突破CPU Limit时,使用之前累计的CPU配额,以达到突破CPU Limit的效果。 未开启CPU Burst时,容器可以使用的CPU配额会被限制在Limit以内,无法实现Burst。

    来自:帮助中心

    查看更多 →

  • 基础指标:IEF指标

    取值范围 单位 主机指标 CPU aom_node_cpu_limit_core cpuCoreLimit CPU内核总量 该指标用于统计测量对象申请的CPU核总量。 ≥1 核(Core) aom_node_cpu_used_core cpuCoreUsed CPU内核占用量 该指标用于统计测量对象已经使用的CPU核个数。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。

    来自:帮助中心

    查看更多 →

  • 监控弹性云服务器

    通过后续章节,您可以了解以下内容: 弹性 云服务器 当前支持的基础监控指标 弹性云服务器操作系统监控的监控指标(安装Agent) 弹性云服务器进程监控的监控指标(安装Agent) GPU加速型实例安装GPU监控插件(Linux,公测) 如何自定义弹性云服务器告警规则 如何查看弹性云服务器运行状态进行日常监控

    来自:帮助中心

    查看更多 →

  • 创建应用

    -@10 > ${flagstat-file} CPU、内存和GPU CPU架构:X86 CPU需求:0.1 Memory:0.1 GPU类型:无 GPU需求:0 CPU架构:X86 CPU需求:16 Memory:10 GPU类型:无 GPU需求:0 输入参数 参数1 参数名称:fastq-file1

    来自:帮助中心

    查看更多 →

  • 安装GPU指标集成插件

    暂不支持CCE纳管后的GPU加速型实例。 前提条件 已安装GPU驱动,未安装lspci工具的云服务器影响GPU掉卡事件的上报。 如果您的弹性云服务器未安装GPU驱动,请参见GPU驱动概述安装GPU驱动。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    视频管理 核心控制服务器 2 CPU:32C MEM:128G DISK:1T 控制调度 任务管理 数字人渲染服务 数字人服务器 X 2U服务器 CPU:64C MEM:128G DISK:2T GPU:4*T4 数字人驱动 数字人渲染 数据服务 数据服务器 3 CPU:32C MEM:128G

    来自:帮助中心

    查看更多 →

  • 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)

    示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPUGPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 最佳实践

    制作自定义镜像并用于训练(Pytorch+CPU/GPU):本案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPUGPU。 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU):本案例介绍如何从

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了