GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    CPU gpu深度学习 更多内容
  • CPU调度

    CPU调度 CPU管理策略 增强型CPU管理策略 父主题: 调度

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1 Host CPU报表主要内容所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型业务场景与应用需求,可提供遥感影像在线智能解译能力,包括遥感影像的单

    来自:帮助中心

    查看更多 →

  • Volcano调度器

    Volcano调度器 插件介绍 Volcano 是一个基于 Kubernetes 的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要的而 Kubernetes 当下缺失的一系列特性。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic

    来自:帮助中心

    查看更多 →

  • 仪表盘

    节点--XGPU设备数量 节点--XGPU设备显存分配量 GPU卡--XGPU设备显存使用率 GPU卡--XGPU设备显存分配量 GPU卡--XGPU设备显存分配率 GPU卡--XGPU设备算力使用率 GPU卡--XGPU设备数量 GPU卡--调度策略 GPU卡--不健康的XGPU设备数量 容器显存分配量

    来自:帮助中心

    查看更多 →

  • 使用CodeLab免费体验Notebook

    ModelArts,一键打开运行和学习,并且可将样例修改后分享到AI Gallery中直接另存用于个人开发。 同时,您开发的代码,也可通过CodeLab快速分享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资源。如需切换为GPU,请在右侧窗口,更换GPU规格。

    来自:帮助中心

    查看更多 →

  • CPU检查

    判断cpu核数是否满足IEF要求。edgectl check cpu无检查CPU:示例执行结果:

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:U CS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 查询支持的服务部署规格

    is_personal_cluster 否 Boolean 是否查询专属资源池支持的服务部署规格列表,默认为false。 infer_type 否 String 推理方式,枚举值如下: real-time:在线服务,默认值 batch:批量服务 edge: 边缘服务 limit 否 String 指定每一页返回的最大条目数,默认为1000。

    来自:帮助中心

    查看更多 →

  • Namespace和Network

    通用计算型”和“GPU型”两种类型的资源,创建命名空间时需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gputil import GPUtil as GPU GPU.showUtilization() import GPUtil as GPU GPUs = GPU.getGPUs() for gpu in GPUs: print("GPU RAM Free: {0:.0f}MB |

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了