GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu云服务器怎么安装cuda 更多内容
  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error

    GP Vnt1裸金属 服务器 用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc

    来自:帮助中心

    查看更多 →

  • 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU)

    04。您可以准备相同规格的弹性 云服务器 E CS 或者应用本地已有的主机进行 自定义镜像 的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step4 制作自定义镜像 目标:构建安装好如下

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎

    来自:帮助中心

    查看更多 →

  • CCE推荐的GPU驱动版本列表

    合适的NVIDIA驱动版本。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表1 GPU驱动支持列表 GPU型号 支持集群类型 机型规格 操作系统 Huawei Cloud

    来自:帮助中心

    查看更多 →

  • 重装的包与镜像装CUDA版本不匹配

    appeares to be a GPU,but CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc

    来自:帮助中心

    查看更多 →

  • 自定义镜像创建Notebook样例

    。 本章节介绍如何使用自定义镜像创建Notebook(在基础镜像中安装化学分子格式转换工具Open Babel),详细步骤如下所示: 步骤1:安装容器引擎 步骤2:获取Notebook基础镜像 步骤3:制作并上传镜像 步骤4:创建并使用Notebook 步骤1:安装容器引擎 在制

    来自:帮助中心

    查看更多 →

  • GPU实例故障分类列表

    内核升级问题 如何处理升级内核后,驱动不可用问题 GPU掉卡问题 如何处理GPU掉卡问题 显卡ERR! 如何处理显卡ERR!问题 软件安装问题 如何处理用户自行安装NVIDIA驱动、CUDA软件,安装过程出错问题 驱动兼容性问题 如何处理驱动兼容性问题 Xid问题 如何处理可恢复的Xid故障问题

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 MPI mindspore_1.3.0-cuda_10.1-py_3

    来自:帮助中心

    查看更多 →

  • 手动更新GPU节点驱动版本

    手动更新GPU节点驱动版本 一般情况下,您可以通过CCE AI套件(NVIDIA GPU)插件配置节点的驱动文件路径,节点重启后会自动安装驱动。您也可以手动更新驱动的方式进行更新。 手动更新GPU节点的驱动版本为临时方案,适用于需要对某个节点进行差异化配置的场景,但节点重启后将自动重置为GPU插件配置中指定的版本。

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装

    来自:帮助中心

    查看更多 →

  • 非硬件故障自恢复处理方法

    非硬件故障自恢复处理方法 如何处理Nouveau驱动未禁用导致的问题 如何处理ECC ERROR:存在待隔离页问题 如何处理升级内核后,驱动不可用问题 如何处理GPU掉卡问题 如何处理显卡ERR!问题 如何处理用户自行安装NVIDIA驱动、CUDA软件,安装过程出错问题 如何处理驱动兼容性问题

    来自:帮助中心

    查看更多 →

  • Lite Server

    Lite Server GPU裸金属服务器使用EulerOS内核误升级如何解决 GPU A系列裸金属服务器无法获取显卡如何解决 GPU裸金属服务器无法Ping通如何解决 GPU A系列裸金属服务器RoCE带宽不足如何解决? GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed

    来自:帮助中心

    查看更多 →

  • 鲲鹏CentOS 7和中标麒麟NKASV 7云服务器使用GNOME图形化后鼠标不可用怎么办?

    7和中标麒麟NKASV 7云服务器使用GNOME图形化后鼠标不可用怎么办? 问题描述 鲲鹏CentOS 7和中标麒麟NKASV 7云服务器安装图形化界面后,远程连接云服务器鼠标不可用。 可能原因 x86云服务器使用了cirrus虚拟显卡,鲲鹏云服务器使用的是virtio GPU。鼠标显示有两种方式,分别称为Software

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • G系列弹性云服务器GPU驱动故障

    G系列弹性云服务器GPU驱动故障 问题描述 在Windows系统的G系列弹性云服务器中,无法打开NVIDIA 控制面板,GPU驱动无法使用或GPU驱动显示异常。 可能原因 GPU驱动状态异常。 处理方法 打开Windows设备管理器,在显示适配器中查看GPU驱动状态。 GPU驱动显示

    来自:帮助中心

    查看更多 →

  • GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML

    GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。 (1)已卸载原有版本NVIDIA驱动和CUDA版本,且已安装新版本的NVIDIA驱动和CUDA版本

    来自:帮助中心

    查看更多 →

  • 手动安装GPU加速型ECS的GRID驱动

    手动安装GPU加速型ECS的GRID驱动 操作场景 GPU加速型实例如需使用OpenGL/DirectX/Vulkan等图形加速能力则需要安装GRID驱动并自行购买和配置使用GRID License。此外,GRID驱动配合vDWS类型License,也支持CUDA,用来满足既需要计算加速也需要图形加速的场景。

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    运行镜像,如pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 request_mode Array of strings 请求模式,AI引擎支持部署为同步在线服务或异步在线服务。 sync:同步在线服务 async:异步在线服务 accelerators

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了