GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    什么gpu云服务器好用 更多内容
  • 使用GPU虚拟化

    init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 v1.27及以下的集群中,使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • Ubuntu系列弹性云服务器如何安装图形化界面?

    执行reboot命令,重启 服务器 。 (可选)GPU加速型弹性 云服务器 结果验证 对于GPU加速型弹性云服务器,在安装完图形化界面后,可通过如下操作验证驱动是否正常工作。 登录管理控制台。 为弹性云服务器配置安全组。 单击弹性云服务器名称,查看弹性云服务器详情,在弹性云服务器详情页面,选择“安全组”。

    来自:帮助中心

    查看更多 →

  • 云服务器处于异常状态

    第三方插件未运行 重启云服务器 音频设备未运行 设置音频设备 初始化会话失败 重启云服务器 自动化脚本执行失败 重启云服务器 云服务器异常 联系客服,寻求技术支持 会话异常 重启会话,若未解决再重启云服务器 初始化会话失败 重启云服务器 附 设置音频设备 远程登录GPU云服务器。 打开本地

    来自:帮助中心

    查看更多 →

  • VR云渲游平台与其他服务的关系

    云渲游平台使用统一身份认证服务实现认证和鉴权功能。 GPU加速云服务器 GA CS GPU加速云服务器GPU Accelerated Cloud Server, GACS)能够提供强大的浮点计算能力,从容应对高实时、高并发的海量计算场景。您可以在创建时选择相应规格的GPU加速云服务器。 在云

    来自:帮助中心

    查看更多 →

  • 监控弹性云服务器

    通过后续章节,您可以了解以下内容: 弹性云服务器当前支持的基础监控指标 弹性云服务器操作系统监控的监控指标(安装Agent) 弹性云服务器进程监控的监控指标(安装Agent) GPU加速型实例安装GPU监控插件(Linux,公测) 如何自定义弹性云服务器告警规则 如何查看弹性云服务器运行状态进行日常监控

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • 手动安装GPU加速型ECS的Tesla驱动

    手动安装GPU加速型ECS的Tesla驱动 操作场景 GPU加速云服务器,需要安装Tesla驱动和CUDA工具包以实现计算加速功能。 使用公共镜像创建的计算加速型(P系列)实例默认已安装特定版本的Tesla驱动。 使用私有镜像创建的GPU加速云服务器,需在创建完成后安装Tesla驱动,否则无法实现计算加速功能。

    来自:帮助中心

    查看更多 →

  • 添加云服务器

    在应用列表中,查看需添加云服务器的应用,单击“添加云服务器”。 图1 添加云服务器 添加云服务器。 部署云服务器:选择用于部署应用的云服务器。 新建:购买新的GPU加速云服务器。 纳管:将在ECS页面创建的GPU加速云服务器纳入到VR云渲游平台管理。 支持纳管的云服务器必须满足以下条件:

    来自:帮助中心

    查看更多 →

  • T4 GPU设备显示异常

    T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU云服务器,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速型云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 渲染节点调度(区域级)

    ,4k。 默认值:1080p。 gpu_ip_type 否 String 分配给设备使用的GPU云服务器的IP类型。 public:表示响应的gpu_ip的IP地址为公网,适用于使用公网连接设备与云服务器的场景。 private: 表示响应的gpu_ip的IP地址为私网,适用于使

    来自:帮助中心

    查看更多 →

  • 步骤四:设备连接

    打包的APK。此时,头显将连接至VR云渲游平台并接入分配的GPU云服务器,头显中呈现GPU云服务器内实时渲染的VR应用画面。 前提条件: 已在VR云渲游平台成功创建应用。 已完成安装客户端操作。 创建的GPU加速云服务器为“闲置”状态。 Android SDK集成开发 在用户终

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了