相机标定原理 更多内容
  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 MongoDB/DDS增量迁移 父主题: 进阶实践

    来自:帮助中心

    查看更多 →

  • Hive CBO原理介绍

    Hive CBO原理介绍 Hive CBO原理介绍 CBO,全称是Cost Based Optimization,即基于代价的优化器。 其优化目标是: 在编译阶段,根据查询语句中涉及到的表和查询条件,计算出产生中间结果少的高效join顺序,从而减少查询时间和资源消耗。 Hive中实现CBO的总体过程如下:

    来自:帮助中心

    查看更多 →

  • 备份原理及方案

    备份原理及方案 DDS实例支持自动备份和手动备份,您可以定期对数据库进行备份,当数据库故障或数据损坏时,可以通过备份文件恢复数据库,从而保证数据可靠性。 备份原理 集群实例 集群实例由dds mongos(路由)、Config(配置)和Shard(分片)组件构成。其中,Confi

    来自:帮助中心

    查看更多 →

  • 背景和原理(对象)

    背景和原理(对象) AstroZero提供的数据对象(Object)定义功能,对应传统方式开发业务系统中的创建数据库表。每个Object对应一张数据库表,用于保存业务系统需要的配置数据和业务数据。 对象用于存储组织或者业务特有的数据,可理解为数据库中的数据表(逻辑表,系统实际存储

    来自:帮助中心

    查看更多 →

  • 节点伸缩原理

    节点伸缩原理 HPA是针对Pod级别的,可以根据负载指标动态调整副本数量,但是如果集群的资源不足,新的副本无法运行的情况下,就只能对集群进行扩容。 CCE集群弹性引擎是Kubernetes提供的集群节点弹性伸缩组件,根据Pod调度状态及资源使用情况对集群的节点进行自动扩容缩容,同

    来自:帮助中心

    查看更多 →

  • 迁移作业原理

    迁移作业原理 数据迁移模型 CDM 数据迁移时,简化的迁移模型如图1所示。 图1 CDM数据迁移模型 CDM通过数据迁移作业,将源端数据迁移到目的端数据源中。其中,主要运行逻辑如下: 数据迁移作业提交运行后,CDM会根据作业配置中的“抽取并发数”参数,将每个作业拆分为多个Task,即作业分片。

    来自:帮助中心

    查看更多 →

  • 设备孪生工作原理

    设备孪生工作原理 边缘节点纳管后,会在边缘节点上安装Edge Agent,其中终端设备管理相关组件如下所示。 EdgeHub:WebSocket客户端,包括同步云端资源更新、报告边缘节点和终端设备信息到云端等功能。 DeviceTwin:设备孪生,负责存储终端设备状态并将设备状态同步到云端。

    来自:帮助中心

    查看更多 →

  • 设备孪生工作原理

    设备孪生工作原理 边缘节点纳管后,会在边缘节点上安装Edge Agent,其中终端设备管理相关组件如下所示。 EdgeHub:WebSocket客户端,包括同步云端资源更新、报告边缘节点和终端设备信息到云端等功能。 DeviceTwin:设备孪生,负责存储终端设备状态并将设备状态同步到云端。

    来自:帮助中心

    查看更多 →

  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 MongoDB/DDS增量迁移 父主题: 数据迁移进阶实践

    来自:帮助中心

    查看更多 →

  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 父主题: 关键操作指导

    来自:帮助中心

    查看更多 →

  • 背景与原理(BPM)

    背景与原理(BPM) 工单管理模块中的工单场景业务编排是通过AstroZero的流程编排BPM(Business Process Management)功能实现的,通过在前端页面调用BPM完成工单流转,即客服人员创单,派单员派发工单,维修工程师处理工单的全过程。 开发BPM即是对

    来自:帮助中心

    查看更多 →

  • 增量迁移原理介绍

    增量迁移原理介绍 文件增量迁移 关系数据库增量迁移 HBase/CloudTable增量迁移 MongoDB/DDS增量迁移 父主题: 关键操作指导

    来自:帮助中心

    查看更多 →

  • 在AR地图数据采集阶段,怎样从激光和全景两种方案中选择

    据采集方式。 方案一:全景方案(仅使用全景设备) 全景设备型号:Insta360 ONE R。 全景采集原理:采集者手持全景相机按照事先规划好的采集路线行走,行走过程中全景相机的双鱼眼镜头捕捉周围360度的全景视频数据(半径3米内采集数据清晰),最终导出包含视频和传感器信息的两个insv文件。

    来自:帮助中心

    查看更多 →

  • 创建边缘河道标定水尺识别作业

    render_calibration_sw 否 Integer 对应控制台的界面参数“标定信息渲染开关”。输出图像是否绘制水尺标定信息,取值范围: 0:表示不绘制。 1:表示用绿色绘制水尺标定信息。 默认值为0。 最小值:0 最大值:1 缺省值:0 响应参数 状态码: 200 表14

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    Hue基本原理 Hue是一组WEB应用,用于和 MRS 大数据组件进行交互,能够帮助用户浏览HDFS,进行Hive查询,启动MapReduce任务等,它承载了与所有MRS大数据组件交互的应用。 Hue主要包括了文件浏览器和查询编辑器的功能: 文件浏览器能够允许用户直接通过界面浏览以及操作HDFS的不同目录;

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    易于调试:CQL提供了详细的异常码说明,降低了用户对各种错误的处理难度。 关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了