半监督目标检测 更多内容
  • 目标检测2D

    目标检测2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054

    来自:帮助中心

    查看更多 →

  • 目标检测3D

    目标检测3D Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    训练类型选择有监督训练,根据所选模型配置训练参数。 表1 有监督微调参数说明 参数名称 说明 模型类型 选择“LLM”。 训练类型 选择“有监督微调”。 训练方式 全量微调:在模型有监督微调过程中,对大模型的全部参数进行更新。这种方法通常会带来最优的模型性能,但需要大量的计算资源和时间,计算开销较高。

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    其中,训练配置选择LLM(大语言模型),训练类型选择自监督训练,根据所选模型配置训练参数。 表1 自监督训练参数说明 参数名称 说明 模型类型 选择“LLM”。 训练类型 选择“自监督训练”。 训练模型 选择训练所需要的模型,模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。

    来自:帮助中心

    查看更多 →

  • 无监督车牌检测工作流

    监督车牌检测工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    指令监督微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 3D预标注

    单击右上角的“添加文件”。 完成文件上传信息。 目标检测 图1 文件上传 预标注功能:此处选择“目标检测”。 添加文件:上传本地点云文件。只能选择PCD点云文件,文件大小不能超过7MB。 目标分割 图2 文件上传 预标注功能:此处选择“目标分割”。 添加文件:上传本地点云文件。只能选

    来自:帮助中心

    查看更多 →

  • 模型数据集支持

    模型数据集支持 模型评测支持多种数据集格式,包括Octopus格式和部分常见开源数据集格式,以下为各类别模型的数据集支持列表和示例。 目标检测2D 目标检测3D 目标追踪2D 目标追踪3D 语义分割2D 语义分割3D 车道线检测 分类 父主题: 模型评测

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点

    来自:帮助中心

    查看更多 →

  • 2D预标注

    2D预标注 2D预标注当前支持目标检测、车道线检测和语义分割(混合)多种预标注功能。其中,目标检测主要用于鱼眼图片的预标注;语义分割(混合)不仅支持鱼眼图片,还支持普通图片的预标注;车道线检测能够快速标注车道线的位置和类别。 2D预标注默认使用服务内置的初始模型部署的在线服务,您

    来自:帮助中心

    查看更多 →

  • 创建智能标注作业

    “主动学习”。“主动学习”表示系统将自动使用监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 算法类型 针对“图像分类”类型的数据集,您需要选择以下参数。 “快速型”:仅使用已标注的样本进行训练。 “精准型”:会额外使用未标注的样本做监督训练,使得模型精度更高。 计算节点规格

    来自:帮助中心

    查看更多 →

  • 应用场景

    食”、“工作”等类别。方便用户管理相册,带来良好体验。 图2 智能相册场景 目标检测 在建筑施工现场,基于定制化的图像识别目标检测系统,可实时监测现场人员是否佩戴安全帽,以降低安全风险。 图3 目标检测场景 图像搜索 基于图像标签的图像搜索技术,不管用户输入关键字,还是输入一张图像,都可以快速搜索到想要的图像。

    来自:帮助中心

    查看更多 →

  • 管理应用防护策略

    参数说明 防护策略名称 自定义当前添加的策略名称。 启用 当前策略是否启用目标检测规则,需要启用则勾选目标检测规则即可,不启用则不勾选。 检测规则标识 目前支持自定义的选择的所有检测规则标识。 防护动作 选择目标检测规则在检测时防护的动作。 检测:针对目标规则的检测对象进行检测,对检测的风险事件进行告警上报。

    来自:帮助中心

    查看更多 →

  • 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习

    这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、

    来自:帮助中心

    查看更多 →

  • 图像类说明

    CATEGORY 针对类目检索的搜索类型,服务实例具有如下高阶请求参数: 添加数据API do_det: 是否进行目标检测,默认为true。 box: 目标矩形框左边,如给定则不进行目标检测,直接使用该box作为目标。 do_cls: 是否进行对象分类,默认为true。 category:

    来自:帮助中心

    查看更多 →

  • Standard数据管理

    ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、 自然语言处理 、音视频分析等AI项目场景。 ModelArts Standard数据

    来自:帮助中心

    查看更多 →

  • 模型训练所需数据量与数据格式要求

    保人员,可以按照常驻异地工作人员申请办理备案。"} 详细有监督数据格式性参见表4。 是 评测数据 CS V、JSONL 同有监督单轮不带system prompt数据。 否 表4 有监督数据格式 数据类型 格式说明 有监督单轮,JSONL格式 编码格式为UTF-8。 每一行表示一段

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    Pro>视觉套件”控制台选择“我的工作流>无监督车牌检测工作流”新建应用,详细操作请见新建应用。您可以开发车牌检测模型,自主上传数据训练模型,实现车牌检测和识别功能。 图1 无监督车牌检测工作流流程 表1 无监督车牌检测工作流说明 流程 说明 详细指导 准备数据 在使用无监督车牌检测工作流开发应用之

    来自:帮助中心

    查看更多 →

  • 创建训练任务

    创建训练任务 创建自监督微调训练任务 创建有监督训练任务 父主题: 训练盘古大模型

    来自:帮助中心

    查看更多 →

  • 标签传播算法(label

    功能介绍 根据输入参数,执行label_propagation算法。 标签传播算法(Label Propagation)是一种基于图的监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了