云监控服务 CES

华为云云监控为用户提供一个针对弹性云服务器、带宽等资源的立体化监控平台。

 
 

    btc智能涨跌预测监控 更多内容
  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    ModelArts数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。 DLI 服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 使用容量优化

    点击“编辑”,进行风险分析配置。当前支持自定义预测智能预测两种模式。 1) 自定义预测:一种峰值预测的方式,根据输入预测峰值找出风险实例 。 预测峰值:预测峰值=参考时间段内的历史容量峰值*(1+压力系数); 风险实例:历史容量峰值和预测峰值,任何一个超出安全阈值,就认为是风险实例,会被输出到风险结果中。

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用 TICS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    配置监控策略,可以单击新增配置项,根据需要增加、减少或者更换需要的指标,填写适当的监控规则。 图1 单击“保存并分析”开始重保风险预测,检查完自动在首页刷新检查结果。您也可以点击“保存”用于记录本次配置,需要时重新进入“风险分析”页面进行重保风险预测。 返回重保风险预测首页即可

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 联邦预测作业

    联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • 部署预测分析服务

    调试代码。 单击“预测”进行测试,预测完成后,右侧“返回结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签,重新进行模型训练及模型部署。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 输入代码:其中预测分析要求数据集中数据的预测列名称为class,否则会导致预测失败。

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 查看监控信息

    查看监控信息 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 日常风险预测/重保风险预测”。 页面右上角选择想要查看的资源条件。注意:不同的预测模式对应的风险报告不同,风险列表的展示样式也不同。 自定义风

    来自:帮助中心

    查看更多 →

  • 异常成本检测规则

    当前支持对按需和包年包月实付成本进行分别监控: 按需异常成本检测规则:通过人工智能算法实现,基于机器学习智能识别费用波动异常。当天实际成本大于当天预测成本的最高值,且差额大于1元,则认为异常。按需影响成本百分比=(实际成本-预测成本最高值)/预测成本最高值。 示例:7月23号实际成本产生105元,预测成本的最高金额为100元,超过就会出现异常。

    来自:帮助中心

    查看更多 →

  • 成本中心-成长地图

    三分钟快速上手 五分钟掌握基础功能 04 使用 成本中心帮助您分析、分配、监控、优化云支持,助力企业 云财务管理 转型。 成本计划与规划 预测机制 预测的应用 预算管理 预算报告 成本管理与控制 设置预算提醒 创建成本监控 分析异常成本记录 成本组织与报告 查看成本分析数据 导出成本明细数据

    来自:帮助中心

    查看更多 →

  • 新建预测外呼任务

    配置回调地址时,请先向系统管理员提出申请,将回调地址加入地址白名单,申请通过后再进行配置。 背景信息 预测外呼依赖的是算法,系统提供四种算法帮助呼叫中心自动计算各座席的待分配的呼叫数: 经验预测算法:通过实时监控统计摘机率和平均通话时长及排队数量等参数,控制呼出速度,间接控制排队数量来达到能接受的呼损条件下座席利用率最高。

    来自:帮助中心

    查看更多 →

  • 创建批量预测作业

    必须选择一个已有模型才能创建批量预测作业。 批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。

    来自:帮助中心

    查看更多 →

  • 删除实时预测作业

    删除实时预测作业 删除实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了