MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce并行处理性能 更多内容
  • 并行处理

    分支名”获取该分支的执行结果。 失败时停止 并行处理出现错误时的是否停止。 True:表示任一并行处理的分支出现错误时,整个任务便停止,并返回错误信息。 False:表示并行处理的分支出现错误后,整个任务会继续执行后续节点。 超时时间(ms) 并行处理过程的最长执行时间,如果超过该时间后

    来自:帮助中心

    查看更多 →

  • 并行处理

    分支名”获取该分支的执行结果。 失败时停止 并行处理出现错误时的是否停止。 True:表示任一并行处理的分支出现错误时,整个任务便停止,并返回错误信息。 False:表示并行处理的分支出现错误后,整个任务会继续执行后续节点。 超时时间(ms) 并行处理过程的最长执行时间,如果超过该时间后

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下的MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个 服务器 组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(application/job)通常会把

    来自:帮助中心

    查看更多 →

  • 配置并行处理算子

    配置并行处理算子 并行处理算子可以同时执行多个分支逻辑,分支间互不影响。 表1 并行处理算子 参数 说明 失败策略 当并行分支中存在失败情况时,配置API工作流的失败策略。 任一分支失败则终止:表示当并行分支中存在失败情况时,则此API工作流置为失败状态,不再继续执行。 分支失败

    来自:帮助中心

    查看更多 →

  • 设计原则

    共享资源: 采取共享资源的设计,通过协作减少争用延时从而改善整体性能;如多个进程可以从一个数据库的同一部分读取。 并行处理:当并行处理过程的增速能抵消通信开销和资源争用延迟时,执行并行处理。 分散负载原则:通过在不同时间或者不同位置处理冲突负载,从而分散负载:将资源划分为成一些相对独立的小

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    MapReduce基本原理 如需使用MapReduce,请确保 MRS 集群内已安装Hadoop服务。 MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。

    来自:帮助中心

    查看更多 →

  • 作业管理

    控告警,轻松管理数据作业运维。 目前MRS集群支持在线创建如下几种类型的作业: MapReduce:提供快速并行处理大量数据的能力,是一种分布式数据处理模式和执行环境,MRS支持提交MapReduce Jar程序。 Spark:基于内存进行计算的分布式计算框架,MRS支持提交SparkSubmit、Spark

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上TB级别的数据集。 一个MapReduce作业(applica

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

  • 性能

    性能 实例性能 单节点多指标 多节点单指标 父主题: DBA智能运维

    来自:帮助中心

    查看更多 →

  • 性能

    性能 历史性能 实时性能 实时诊断 性能趋势对比查看 自定义图表 父主题: DBA智能运维(旧版)

    来自:帮助中心

    查看更多 →

  • 性能

    性能 历史性能 实时性能 实时诊断 性能趋势对比查看 自定义图表 父主题: DBA智能运维

    来自:帮助中心

    查看更多 →

  • 内存优化型

    超高网络收发包能力 实例网络性能与计算规格对应,规格越高网络性能越强 为了提高网络性能,可以将网卡的MTU值设置为MTU=8888 最大网络收发包:60万PPS 最大内网带宽:13Gbps 内存优化型M7 概述 M7型 弹性云服务器 搭载第三代英特尔® 至强® 可扩展处理器,在性能、安全、稳定性等

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

  • MapReduce

    MapReduce MapReduce基本原理 MapReduce与其他组件的关系 MapReduce开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • DataArts Studio支持的数据源

    √ √ √ √ MapReduce服务 MRS HBase) √ × × √ × × × MapReduce服务MRS Hive) √ √ √ √ √ × √ MapReduce服务MRS Kafka) √ × √ × × × √ MapReduce服务MRS Spark)[1]

    来自:帮助中心

    查看更多 →

  • ClickHouse集群管理

    底层基础设施,利用完善的SQL语句支持,专注于数据价值的分析。 极致性能:使用分布式大规模并行处理MPP框架,并充分利用所有可用的硬件,以尽可能快地处理每个查询。查询效率数倍于传统 数据仓库 ,单个查询的峰值处理性能高达每秒数TB。 安全可靠:用户集群独立部署,支持VPC私有网络隔离,数据访问安全多重保障。

    来自:帮助中心

    查看更多 →

  • 性能统计

    性能统计 在数据库的运行过程中,会涉及到锁的访问、磁盘IO操作、无效消息的处理,这些操作都可能是数据库的性能瓶颈,通过 GaussDB (DWS)提供的性能统计方法,可以方便定位性能问题。 输出性能统计日志 参数说明:对每条查询,以下4个选项控制在服务器日志里记录相应模块的性能统计数据,具体含义如下:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了