MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    hadoop mapreduce 查看 更多内容
  • MapReduce与其他组件的关系

    MapReduce与其他组件的关系 MapReduce和HDFS的关系 HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。 MapReduce是一种编程模型,用于大数据集(大于1TB)的并

    来自:帮助中心

    查看更多 →

  • 配置MapReduce应用安全认证

    配置MapReduce应用安全认证 场景说明 在kerberos认证集群环境下,各个组件之间的相互通信不能够简单的互通,而需要在通信之前进行相互认证,以确保通信的安全性。 用户在提交MapReduce应用程序时,需要与Yarn、HDFS等之间进行通信。那么提交MapReduce的应

    来自:帮助中心

    查看更多 →

  • 运行MapReduce作业

    运行MapReduce作业 用户可将自己开发的程序提交到 MRS 中,执行程序并获取结果,本章节指导您如何在MRS集群中提交一个MapReduce作业。 MapReduce作业用于提交Hadoop jar程序快速并行处理大量数据,是一种分布式数据处理模式。 用户可以在MRS管理控制台

    来自:帮助中心

    查看更多 →

  • ResourceManager进行主备切换后,任务中断后运行时间过长

    0之前版本:http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3

    来自:帮助中心

    查看更多 →

  • ResourceManager进行主备切换后,任务中断后运行时间过长

    0之前版本:http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3

    来自:帮助中心

    查看更多 →

  • MapReduce Shuffle调优

    MapReduce Shuffle调优 操作场景 Shuffle阶段是MapReduce性能的关键部分,包括了从Map task将中间数据写到磁盘一直到Reduce task拷贝数据并最终放到reduce函数的全部过程。这部分Hadoop提供了大量的调优参数。 图1 Shuffle过程

    来自:帮助中心

    查看更多 →

  • MapReduce Shuffle调优

    MapReduce Shuffle调优 操作场景 Shuffle阶段是MapReduce性能的关键部分,包括了从Map task将中间数据写到磁盘一直到Reduce task复制数据并最终放到reduce函数的全部过程。这部分Hadoop提供了大量的调优参数。 图1 Shuffle过程

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    codec为“org.apache.hadoop.io.compress.ZStandardCode”: set hive.exec.compress.output=true; set mapreduce.map.output.compress=true; set mapreduce.map.output

    来自:帮助中心

    查看更多 →

  • 配置MapReduce任务日志归档和清理机制

    在搜索框中输入参数名称,修改并保存配置。然后在Mapreduce服务“概览”页面选择“更多 > 同步配置”。同步完成后重启Mapreduce服务。 作业日志参数: 表1 参数说明 参数 描述 默认值 mapreduce.jobhistory.cleaner.enable 是否开启作业日志文件清理功能。

    来自:帮助中心

    查看更多 →

  • 配置MapReduce任务日志归档和清理机制

    在搜索框中输入参数名称,修改并保存配置。然后在Mapreduce服务“概览”页面选择“更多 > 同步配置”。同步完成后重启Mapreduce服务。 作业日志参数: 表1 参数说明 参数 描述 默认值 mapreduce.jobhistory.cleaner.enable 是否开启作业日志文件清理功能。

    来自:帮助中心

    查看更多 →

  • HBase shell客户端在使用中有INFO信息打印在控制台导致显示混乱

    把日志输出到日志文件中,后期如果使用hbase org.apache.hadoop.hbase.mapreduce.RowCounter等命令,执行结果请在日志文件“HBase客户端安装目录/HBase/hbase/logs/hbase.log”中查看。 切换到HBase客户端安装目录,执行以下命令使配置生效。

    来自:帮助中心

    查看更多 →

  • Hive配置类问题

    heap space. 解决方案: 对于MapReduce任务,增大下列参数: set mapreduce.map.memory.mb=8192; set mapreduce.map.java.opts=-Xmx6554M; set mapreduce.reduce.memory.mb=8192;

    来自:帮助中心

    查看更多 →

  • 修改索引状态

    apache.hadoop.hbase.hindex.global.mapreduce.GlobalTableIndexer -Dtablename.to.index='table' -Dindexnames.to.unusable='idx1' 执行成功后,再次查看索引信息: hbase

    来自:帮助中心

    查看更多 →

  • MapReduce大任务的AM调优

    参数 描述 默认值 yarn.app.mapreduce.am.resource.mb 该参数值必须大于下面参数的堆大小。单位:MB 1536 yarn.app.mapreduce.am.command-opts 传递到MapReduce ApplicationMaster的JVM启动参数。

    来自:帮助中心

    查看更多 →

  • 支持的大数据平台简介

    包括华为云MapReduce服务(MRS)、Cloudera CDH和Hortonworks HDP,满足用户业务的灵活诉求。 华为云MapReduce服务(MRS) 华为云MapReduce服务(MRS)是华为云提供的大数据服务,可以在华为云上部署和管理Hadoop系统,一键即可部署Hadoop集群。

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用运行环境

    准备MapReduce应用运行环境 MapReduce的运行环境可以部署在Linux环境下。您可以按照如下操作完成运行环境准备。 操作步骤 确认服务端YARN组件和MapReduce组件已经安装,并正常运行。 客户端运行环境已安装1.7或1.8版本的JDK。 客户端机器的时间与H

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    hadoop.mapreduce.Job:用户提交MR作业的接口,用于设置作业参数、提交作业、控制作业执行以及查询作业状态。 org.apache.hadoop.mapred.JobConf:MapReduce作业的配置类,是用户向Hadoop提交作业的主要配置接口。 表1 类org.apache

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    hadoop.mapreduce.Job:用户提交MR作业的接口,用于设置作业参数、提交作业、控制作业执行以及查询作业状态。 org.apache.hadoop.mapred.JobConf:MapReduce作业的配置类,是用户向Hadoop提交作业的主要配置接口。 表1 类org.apache

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个 服务器 组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

  • spark-shell执行SQL跨文件系统load数据到Hive表失败

    据迁移操作。这个MapReduce任务配置直接从Spark任务配置里面提取,但是Spark任务的net.topology.node.switch.mapping.impl配置项不是hadoop的默认值,需要使用Spark的jar包,因此MapReduce会报类找不到。 处理步骤 方案一:

    来自:帮助中心

    查看更多 →

  • 多个NameService环境下运行MapReduce任务失败

    <property> <name>yarn.app.mapreduce.am.staging-dir</name> <value>/folder1/tmp/hadoop-yarn/staging</value> </property> 父主题: MapReduce常见问题

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了