无服务器图片生成缩略图

无服务器图片生成缩略图

    图片相似度检测 更多内容
  • 准备数据

    文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要

    来自:帮助中心

    查看更多 →

  • SearchFace

    人脸ID,由系统内部生成的唯一ID。 external_image_id String 人脸所在的外部图片ID。 similarity Double 人脸搜索时用于被检索的相似。 external_fields Json 用户添加的额外自定义字段。 父主题: 消息对象结构

    来自:帮助中心

    查看更多 →

  • AllParam

    图像数据,Base64编码,要求: Base64编码后大小不超过8MB,建议。 图片为JPG/JPEG/BMP/PNG格式。 similarity Double 人脸相似,1表示最大,0表示最小,值越大表示越相似。一般情况下超过0.93即可认为是同一个人。 face_set_name String

    来自:帮助中心

    查看更多 →

  • 使用流程简介

    果,帮助用户自动进行人脸的识别、比对以及相似查询等。 使用流程 图1 使用流程 使用前必读 用户需要具备编程能力,熟悉Java、Python、iOS、Android、Node.js编程语言。 FRS服务需要用户通过调用API接口,识别图片中的人脸信息,然后返回JSON格式的识别

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强:

    来自:帮助中心

    查看更多 →

  • 设备智能告警消息结构体

    青年,年龄大于等于18,小于36 MIDDLE_AGE 中年,年龄大于等于36,小于60 OLD_AGE 老年,年龄大于60 similarity Int 相似 target_alarm_type String 告警类型。设备上传的目标分组名称 group_id Int 目标库ID appear_cnt

    来自:帮助中心

    查看更多 →

  • 训练分类器

    训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行 文字识别 和结构化提取。 前提条件 已在文字识别套件控制台选

    来自:帮助中心

    查看更多 →

  • 准备数据

    在使用安全帽检测技能模板开发技能之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确,训练样本跟真实使用场景尽量相似。

    来自:帮助中心

    查看更多 →

  • 准备数据

    在使用安全帽检测技能模板开发技能之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确,训练样本跟真实使用场景尽量相似。

    来自:帮助中心

    查看更多 →

  • 方案概述

    包括门店签到(门头照相似判断)、货架陈列盘点(SKU识别+排面分析)、广宣识别、作弊检测(翻拍识别)等零售终端拜访业务。 方案优势 丰富场景: 大模型图像匹配算法,更好适应门头文字遮挡、无牌匾、多门头混淆情况,精准识别翻拍(夜间、强光照等),批量货架重复检测,拦截跨店照片作弊行为等。

    来自:帮助中心

    查看更多 →

  • 标注物体检测数据

    标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应

    来自:帮助中心

    查看更多 →

  • 检测算法中的难例图片判断

    检测算法中的难例图片判断 对检测结果进行判断。 接口调用 hard_sample_detection_filter(inputs) 参数说明 表1 参数说明 参数名 是否必选 参数类型 描述 inputs 是 list 检测框,例如[bbox1, bbox2, bbox3,...

    来自:帮助中心

    查看更多 →

  • 查询配体相似性图计算任务

    success Boolean 相似计算是否成功。 similarity Float 配体对之间的相似。 最小值:0 最大值:1 reason String 相似计算失败的理由。 最小长度:1 最大长度:512 请求示例 无 响应示例 状态码: 200 查询配体相似性图计算任务成功响应。

    来自:帮助中心

    查看更多 →

  • 配置知识融合

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 配置知识融合时,如何选择融合标识符和配置属性

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 什么是知识融合

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 人脸识别

    ,用户通过实时访问和调用API获取人脸处理结果,帮助用户自动进行人脸的识别、比对以及相似查询等,打造智能化业务系统,提升业务效率。 API文档 API概览 申请服务 人脸检测 人脸对比 活体检测 人脸搜索 人脸库资源管理 人脸资源管理 02 购买 人脸识别服务 的计费方式简单、灵

    来自:帮助中心

    查看更多 →

  • 图片

    在“图片”后显示“url”的框中输入图片的地址。 单击“图片”下方的虚线框,选择图片。 直接拖动图片至“图片”下方的虚线框中。 图片选择后,您也可以进行编辑和删除操作。单击图片区域的可以删除当前图片,单击可以修改当前图片。 缩放模式:单击下拉选项,可以设置图片的缩放模式。可设置为默认、按比例缩放、裁剪缩放、拉伸缩放。

    来自:帮助中心

    查看更多 →

  • 图片

    图片 图片组件用于在页面展示图片。 在表单开发页面,从“通用组件”中,拖拽“图片”组件至表单设计区域,如图1。 图1 图片 显示名称:设置图片显示名称,默认隐藏显示名称。 选择图片:单击“上传图片”,上传需要展示的图片。 点击放大预览:勾选后,可放大预览图片。 移动端独立设置:勾选后,可给移动端单独设置展示的图片。

    来自:帮助中心

    查看更多 →

  • 事件登记

    重复工单:系统根据上报人联系方式,标题、内容,所属网格与历史工单查询比对,系统按照相似由高到低展示相似最高的重复工单。 历史工单:系统根据标题、内容与历史工单查询比对,系统按照相似由高到低展示相似最高的历史工单。受理人员可以手动搜索是否有相同的历史工单。 知识推荐:受理员可通

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    8,输入用户问“我可以去哪办理”,机器人返回相似得分大于0.8的标准问给用户,并推荐相似得分大于0.6的标准问: 图8 阈值调整前 单击“查看JSON”,查看具体的相似得分。 图9 查看相似得分 阈值调整后,推荐问阈值为0.7,直接回答阈值为0.9,输入用户问“我可以去哪办理”,语料库中没有与用户问相似度得分高于0

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了