经销商伙伴计划

具有华为云的售前咨询、销售、服务能力,将华为云销售给最终用户的合作伙伴

 

 

 

    bp神经网络预测股票 更多内容
  • 创建预测分析项目

    ModelArts数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 创建批量预测作业

    必须选择一个已有模型才能创建批量预测作业。 批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    在线服务 步骤7:在线预测 在“部署上线 > 在线服务”管理页面,单击在线服务名称,进入在线服务详情页面。 在线服务详情页面中,切换到 “预测“ 页签,单击“上传”,从本地上传待预测数据,格式参考算法说明。 本地上传数据完成后,单击“预测”,开始预测。 图9 预测结果 步骤8:清除资源

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • BP账户能使用消息&短信服务吗?

    BP账户能使用消息&短信服务吗? 不能。BP账户及其子账户都不能开通和使用华为 云消息 &短信服务。 父主题: 认证相关

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用 TICS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    重保风险预测 使用场景 仅白名单用户可以使用重保风险预测。 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 重保风险预测”。 单击“风险分析”进行风险预测配置。 批量参数设置,选择活动时间段。 配置容量阈

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。 DLI 服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 联邦预测作业

    联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • 部署预测分析服务

    调试代码。 单击“预测”进行测试,预测完成后,右侧“返回结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签,重新进行模型训练及模型部署。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 输入代码:其中预测分析要求数据集中数据的预测列名称为class,否则会导致预测失败。

    来自:帮助中心

    查看更多 →

  • 新建预测外呼任务

    页面,“任务类型”选择“预测外呼”。 图1 新建预测外呼任务(基本信息)界面 配置基本信息。 任务名称:自定义任务名称。 主叫号码:选择本租间下已有的主叫号码。新增的主叫号码数量不能超过100个。 任务起止时间:任务开始时间和结束时间。 任务类型:选择预测外呼。从模板新建的外呼任

    来自:帮助中心

    查看更多 →

  • 删除实时预测作业

    删除实时预测作业 删除实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 时序预测学件

    时序预测学件 创建项目 时序预测 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 删除批量预测作业

    删除批量预测作业 删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测

    来自:帮助中心

    查看更多 →

  • 编辑批量预测作业

    编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了