GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu jupyter 更多内容
  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    单个GPU卡最多虚拟化成20个GPU虚拟设备。 使用GPU虚拟化后,不支持init容器。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    安装nvidia-fabricmanager服务 A100/A800 GPU支持 NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 本文以驱动版本470.103

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU 服务器 出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表1 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • GPU插件关键参数检查

    GPU插件关键参数检查 检查项内容 检查CCE GPU插件中部分配置是否被侵入式修改,被侵入式修改的插件可能导致升级失败。 解决方案 使用kubectl连接集群。 执行以下命令获取插件实例详情。 kubectl get ds nvidia-driver-installer -nkube-system

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速 云服务器 时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • JupyterLab中文件保存失败,如何解决?

    保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。 解决方法 关掉插件然后重新保存。 减少文件大小。 重新打开jupyter页面。 请检查网络。 父主题: 代码运行常见错误

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • GPU A系列裸金属服务器没有任务,GPU被占用问题

    GPU A系列裸金属服务器没有任务,GPU被占用问题 问题现象 服务器没有任务,但GPU显示被占用。 图1 显卡运行状态 处理方法 nvidia-smi -pm 1 父主题: FAQ

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    -env 执行如下命令在my env里安装如下依赖包。 pip install jupyter pip install jupyter_core==5.3.0 pip install jupyter_client==8.2.0 pip install ipython==8.10

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • Horovod/MPI/MindSpore-GPU

    Horovod/MPI/MindSpore-GPU ModelArts训练服务支持了多种AI引擎,并对不同的引擎提供了针对性适配,用户在使用这些引擎进行模型训练时,训练的算法代码也需要做相应适配,本文讲解了使用Horovod/MPI/MindSpore-GPU引擎所需要做的代码适配。 Hor

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了